Bud development in Picea engelmannii. I. Vegetative bud development, differentiation, and early development of reproductive buds

1983 ◽  
Vol 61 (9) ◽  
pp. 2291-2301 ◽  
Author(s):  
Derek L. S. Harrison ◽  
John N. Owens

Vegetative buds of Engelmann spruce (Picea engelmannii Parry) from the Prince George Forest District (British Columbia) were collected and studied. In mid-April, dormancy ended as determined from mitotic divisions within the leaf primordia; 2 weeks later mitotic activity occurred in the bud apices. Bud-scale initiation began in terminal buds by late May followed by that in axillary buds 2 weeks later. Shoot elongation began in late May, bud burst occurred in late June, and both shoot elongation and bud-scale initiation were complete by late July. Terminal buds began to differentiate by the initiation of leaf primordia, into vegetative buds early in August whereas axillary buds began to differentiate 1 week later. Leaf initiation was completed in all vegetative buds by late September and buds were dormant by mid-October. Pollen cones initiated microsporophylls after bud-scale initiation. Microsporangial initiation began in late August. Microsporangial enlargement began in mid-September and continued until dormancy when pollen mother cells were observed in a premeiotic stage. Seed cones initiated bracts directly after bud-scale initiation. In mid-August, ovuliferous scales began to be initiated. Two ovule primordia formed adaxially, one on each side of the median longitudinal axis of each ovuliferous scale. Each ovule formed one large central megaspore mother cell which overwintered in a premeiotic stage.

1973 ◽  
Vol 51 (11) ◽  
pp. 2223-2231 ◽  
Author(s):  
John N. Owens ◽  
Marje Molder

Vegetative apices of mature Tsnga heterophylla (Raf.) Sarg. were studied throughout the annual growth cycle. Apices become mitotically active during the last week of March. Leaf primordia elongate, causing the buds to swell, while the apex remains small and produces bud scales. Axillary buds are initiated about mid-April. Little shoot elongation occurs before vegetative buds burst in mid-May. After bud burst, rapid shoot elongation occurs for about 7 weeks, during which time the apex also elongates and the rest of the bud scales are initiated. There is a marked increase in mitotic activity in the apex during the transition from bud-scale initiation to leaf initiation, which occurs early in July when the grand phase of shoot elongation is complete. This is believed to be the time when vegetative apices undergo transition to become reproductive apices. Leaf primordia are initiated in rapid succession until mid-August, when two-thirds of the final number of leaves are initiated and the subtending shoot is fully elongated. From mid-August until mid-November, no shoot elongation occurs, leaf primordia are initiated more slowly, and mitotic activity in the apex gradually decreases. After all of the next season's leaves have been initiated, about mid-November, mitotic activity in the apex stops and the vegetative buds become dormant.


1984 ◽  
Vol 14 (4) ◽  
pp. 575-588 ◽  
Author(s):  
John N. Owens

Vegetative buds of mature Abiesgrandis (Dougl.) Lindl. (grand fir) were studied throughout the annual growth cycle. Vegetative buds became mitotically active in mid-March, bud burst occurred in mid-May, and shoot elongation continued until the end of June. Bud scales were initiated during shoot elongation. In mid-April axillary buds were initiated on elongating shoots. They were initiated subterminally in the axils of the first-formed bud scales and laterally in the axils of leaf primordia. Axillary buds followed the same developmental sequence as terminal buds. The end of bud-scale initiation was preceded by rapid apical enlargement and followed by a period of rapid leaf initiation. The rate of leaf initiation slowed in mid-August but continued until vegetative buds became dormant in mid-November. Seed cones are axillary on the upper surface of vigorous shoots in the upper region of the crown. Pollen cones are axillary on the lower surface of shoots below the seed cone bearing region of the crown. Bract and microsporophyll initiation began in early to mid-July, was rapid at first, until about two-thirds of the primordia were initiated, then slower until all primordia were initiated. All bracts and ovuliferous scales were initiated and seed-cone buds became dormant in early November. All microsporophylls were initiated by early September, microsporangial development began in mid-August, and pollen-cone buds became dormant in early November. The cyclic nature of cone production in Abies is discussed in relation to cone-bud initiation, cone maturation, and photosynthate utilization in developing shoots.


1977 ◽  
Vol 55 (8) ◽  
pp. 992-1008 ◽  
Author(s):  
John N. Owens ◽  
Marje Molder

In the trees studied, vegetative buds began development in early April, bud burst occurred in early June and shoot elongation was completed by late July. Vegetative buds initiated bud scales from mid-April until mid-July and then initiated leaf primordia until the vegetative buds became dormant in November. All axillary buds were initiated in mid-May and their bud scales were initiated until early July. During bud-scale initiation, distal vegetative lateral apices were more conical but had a mitotic frequency similar to other lateral apices. Near the end of bud-scale initiation, vegetative apices accumulated more phenolic and ergastic compounds in future pith cells than did potential seed-cone or pollen-cone apices. Bud differentiation occurred in mid-July at the end of lateral shoot elongation. During bud differentiation the mitotic frequency of pollen-cone and seed-cone apices increased much more than that of distal vegetative apices. This resulted in a marked increase in apical size and a change in apical shape and zonation that made reproductive apices easily distinguishable from vegetative apices. Bracts began to be initiated in mid-July, and ovuliferous scales, in mid-August. Both continued to be initiated until seed-cone buds became dormant in November. A single megaspore mother cell formed in each ovule before dormancy. Microsporophylls were initiated from mid-July until early September. Microsporangia began to differentiate in September and contained microspore mother cells when pollen cones became dormant in mid-October. Meiosis did not begin before dormancy. A few potential vegetative and many potential seed-cone and potential pollen-cone apices became latent during bud-scale initiation. Some potential seed-cone apices became vegetative buds. Consequently, the number of cone buds formed was determined primarily by the proportion of apices that developed fully and the pathway along which they developed.


1982 ◽  
Vol 60 (11) ◽  
pp. 2249-2262 ◽  
Author(s):  
John N. Owens ◽  
Hardev Singh

Vegetative terminal and axillary bud development and the time and method of cone initiation and cone bud development are described for Abies lasiocarpa (Hook.) Nutt.Cell divisions began in vegetative buds early in April. A brief period of apical enlargement was followed by bud-scale initiation for 10 weeks. Buds were initiated in the axils of some leaf primordia about the time of vegetative bud burst, 1 month after vegetative bud dormancy ended. All buds completed bud-scale initiation by the end of June, which coincided with the end of the rapid phase of lateral shoot elongation. This was followed by a 2-week period of bud differentiation, during which time few primordia were initiated, apical size increased, and apical shape and zonation changed more in reproductive than in vegetative apices. Leaf and bract initiation began by mid-July and continued until mid-October, when vegetative and seed-cone buds became dormant. Microsporophyll initiation began earlier and was nearly completed by the end of July; pollen-cone buds became dormant in mid-September.The number of cone buds is determined by the proportion of axillary bud primordia that fully developed and the pathway along which they developed. Potential seed-cone buds may become latent but more commonly differentiate into vegetative buds of low vigor. Potential pollen-cone buds frequently become latent but have not been observed to differentiate into vegetative buds. The position of the axillary bud on the shoot and of the shoot in the tree strongly influences axillary bud development in Abies.


1979 ◽  
Vol 57 (7) ◽  
pp. 687-700 ◽  
Author(s):  
John N. Owens ◽  
Marje Molder

Vegetative terminal long shoot buds (TLSB) and short shoot buds (SSB) were studied throughout the annual growth cycle in several trees over several years. TLSB were not totally preformed. The dormant TLSB consisted of bud scales enclosing some basal leaves and both were borne on a broad receptacle. Centripetal to the basal leaves, a series of axial leaf primordia was borne on the flanks of the apex. After dormancy a second series of axial leaves was initiated above those initiated before dormancy. Basal and both series of axial leaves elongated during shoot elongation as the terminal apex again initiated axial leaves, bud scales, and then basal leaves. After shoot elongation the first series of axial leaves was initiated before the TLSB became dormant in October. No dimorphism occurred between predormancy and postdormancy axial leaves or axial and basal leaves. Axilliary buds were initiated in the TLSB about the time of flushing. All leaves did not bear axillary buds. All axillary buds rapidly initiated a series of bud scales and then entered a slower phase of bud-scale initiation and rapid apical enlargement. Leaf primordia then were initiated at the base of the apex and borne on the broad receptacle. Apices then differentiated into axillary long shoot buds (ALSB) or SSB. ALSB developed similarly to TLSB, whereas axillary SSB initiated leaf primordia at the base of the apex and all but the last primordia to be initiated were borne on the broad receptacle. Axillary SSB were preformed but ALSB were not completely preformed and both became dormant in mid-October. The apex of a short shoot lived for up to 8 to 10 years. In each successive year it passed through phases of bud-scale initiation and leaf initiation to form a dormant preformed SSB which flushed after overwintering. Annual short shoot elongation was about 1 mm. The LSB and SSB apices varied in shape and size during the year but apical zonation was similar in all apices. Larix vegetative bud development is compared with that found in other gymnosperms.


1984 ◽  
Vol 62 (3) ◽  
pp. 475-483 ◽  
Author(s):  
John N. Owens

Vegetative buds of mature Tsuga mertensiana (Bong) Carr. (mountain hemlock) were studied throughout the annual growth cycle. Cell divisions began in vegetative buds in mid-April and shoots and leaves elongated within the bud scales causing the buds to burst in late June. Lateral shoots completed elongation by the end of July. Vegetative terminal apices from lateral branches began bud-scale initiation when bud dormancy ended. All bud scales were initiated by the end of July. Leaf primordial initiation occurred from that time until mid-October when vegetative buds again became dormant. Axillary buds were initiated on the elongating shoots in early June then followed the same phenology as vegetative terminal buds. Vegetative bud and shoot development are compared with that of western hemlock and certain other members of the Pinaceae. The relationship of bud development to shoot development is discussed for mountain hemlock and other conifers having a similar pattern of vegetative bud development.


1984 ◽  
Vol 62 (3) ◽  
pp. 484-494 ◽  
Author(s):  
John N. Owens

Seed cones of Tsuga mertensiana (Bong) Carr. occur terminally on distal lateral branches and form from the differentiation of a terminal, previously vegetative apex, into a seed-cone apex. Pollen cones commonly occur on lateral branches and form from the differentiation of an undetermined axillary apex about 6 weeks after axillary bud initiation. Pollen cones also occasionally occur terminally. All cone buds began differentiation in late July after bud-scale initiation was complete and at about the end of lateral shoot elongation. Seed-cone buds initiated bracts and ovuliferous scales, but not ovules, before they became dormant at the end of October. Pollen-cone buds initiated all microsporophylls by early September. Microsporangia containing microspore mother cells differentiated before pollen-cone buds became dormant in mid-October. The time of cone-bud differentiation is related to vegetative bud and shoot development. The time and method of cone-bud differentiation is discussed in relation to T. heterophylla and other conifers having similar bud development.


1985 ◽  
Vol 15 (2) ◽  
pp. 354-364 ◽  
Author(s):  
J. N. Owens ◽  
J. E. Webber ◽  
S. D. Ross ◽  
R. P. Pharis

The relative importance of cell division and cell elongation to shoot elongation and the anatomical changes in vegetative terminal apices were assessed for 9- and 10-year-old seedlings of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) in response to two effective cone-induction treatments, gibberellin A4/7 (GA4/7) and root-pruning (RP). Root-pruning was done in mid-April at the start of vegetative bud swelling and GA treatments were begun at vegetative bud flushing in mid-May and continued until early July. Shoot elongation before flushing resulted primarily from cell divisions and was not affected by the RP treatment. Shoot elongation after flushing resulted primarily from cell expansion which was reduced by RP treatments. Root-pruning significantly slowed mitotic activity, apical growth, and development of vegetative terminal buds from mid-June through mid-July. Apical growth then resumed during leaf initiation and the final number of leaf primordia initiated was not affected. This resulted in a delay of 2 to 4 weeks in the transition from bud-scale to leaf initiation. Retarded terminal vegetative apices anatomically resembled latent axillary apices but were never completely inhibited. GA + RP had the same effect as RP. GA4/7 alone had no effect on shoot or apical development. These results show that RP and GA + RP significantly retard shoot elongation and terminal bud development but still allow normal development of vegetative terminal buds. Retardation of bud development by a few weeks shifts the critical morphogenetic phase of transition from bud scale to leaf initiation to a later time when endogenous and environmental conditions may differ from the normal.


1976 ◽  
Vol 54 (3-4) ◽  
pp. 313-325 ◽  
Author(s):  
John N. Owens ◽  
Marje Molder

Vegetative apices of Picea sitchensis (Bong.) Carr. were studied throughout the annual growth cycle. Apices became mitotically active late in March and the shoot axis and leaf primordia elongated causing the bud to swell. New axillary apices were initiated in mid-April and the terminal apex and new axillary apices initiated bud scales until early in July. Vegetative bud burst occurred early in June and shoot elongation was completed by mid-July. The end of shoot elongation coincided with the onset of leaf initiation. The change from bud-scale to leaf initiation was characterized by a period of increased mitotic activity and rapid apical growth. About half of the final number of leaves were initiated during the early period of rapid leaf initiation. The remaining leaf primordia were initiated more slowly over the next 3 months. Buds became dormant by mid-November.


1976 ◽  
Vol 54 (8) ◽  
pp. 766-779 ◽  
Author(s):  
John N. Owens ◽  
Marje Molder

Pollen-cone and seed-cone buds of Picea sitchensis (Bong.) Carr. are found as either terminal or axillary buds. Pollen cones are most likely to develop from small axillary apices on vigorous distal shoots or small terminal apices on less vigorous, proximal shoots. Seed cones are most likely to develop from large, distal axillary apices on vigorous shoots or smaller terminal apices on less vigorous shoots. All apices became mitotically active late in March, passed through a 3.5-month period of bud-scale initiation, and in mid-July became differentiated as vegetative, pollen-cone, or seed-cone apices. Potentially pollen-cone apices were smaller, had a lower mitotic frequency during bud-scale initiation, and produced fewer bud scales than apices which developed into seed-cone or vegetative buds. During bud-scale initiation all apices had a few strands of cells containing phenolic compounds in the developing pith. At the time of bud differentiation, the pith of vegetative apices accumulated more phenolic compounds and non-phenolic ergastic materials, whereas the pith of reproductive apices did not. This was followed by a marked increase in mitotic frequency in reproductive apices, resulting in changes in apical size and shape. Leaf, bract, and microsporophyll initiation began about the end of July. All microsporophylls were initiated by the end of August. Sporogenous cells developed, but meiosis did not occur before the pollen cones became dormant at the end of October. Two-thirds of the bracts were initiated by the end of August. The remaining bracts were initiated more slowly until dormancy. Ovuliferous scales were initiated for 3 months beginning in September, and megaspore mother cells appeared but did not undergo meiosis before seed cones became dormant at the end of November. There was no difference in the time of vegetative, pollen-cone, and seed-cone bud differentiation, which occurred at the end of lateral shoot elongation.


Sign in / Sign up

Export Citation Format

Share Document