leaf primordia
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 17)

H-INDEX

23
(FIVE YEARS 2)

Botany ◽  
2021 ◽  
Author(s):  
Jamile Fernandes Lima ◽  
Kleber Resende Silva ◽  
Daniela Guimarães Simão ◽  
Vinícius Coelho Kuster ◽  
Denis Oliveira

Leaf ontogenesis is determinant for the establishment and regulation of its structural and functional properties, in addition to being an excellent tool for assignment to different groups of angiosperms. Even though the importance of leaf morphology and anatomy for taxonomic use is well known, few studies have addressed the processes of leaf ontogeny in Melastomataceae. Herein, we sought to define the ontogenetic steps of leaf of Trembleya phlogiformis, highlighting the indumentum, to understand the main functional traits. Shoot apex, young and fully expanded leaves were processed by usual light microscopy procedures. At the first node, leaf primordia are densely covered with trichomes and emergences. The adaxial layer of ground meristem gives rise to the palisade parenchyma, the procambium originates from median layers of ground meristem and the spongy parenchyma develops from abaxial layers of ground meristem. The differentiation of isobilateral mesophyll on leaves of T. phlogiformis, a common feature in Microlicieae, comes from ground meristem stratification. However, T. phlogiformis stands out by showing in the leaf mature spongy parenchyma cells with irregular shapes. The leaf ontogeny reveals distinct mechanisms of cell differentiation and may be important for the establishment of functional adaptive traits.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yaxian Zong ◽  
Ziyuan Hao ◽  
Zhonghua Tu ◽  
Yufang Shen ◽  
Chengge Zhang ◽  
...  

Abstract Background Liriodendron chinense is a distinctive ornamental tree species due to its unique leaves and tulip-like flowers. The discovery of genes involved in leaf development and morphogenesis is critical for uncovering the underlying genetic basis of these traits. Genes in the AP2/ERF family are recognized as plant-specific transcription factors that contribute to plant growth, hormone-induced development, ethylene response factors, and stress responses. Results In this study, we identified 104 putative AP2/ERF genes in the recently released L. chinense genome and transcriptome database. In addition, all 104 genes were grouped into four subfamilies, the AP2, ERF, RAV, and Soloist subfamilies. This classification was further supported by the results of gene structure and conserved motif analyses. Intriguingly, after application of a series test of cluster analysis, three AP2 genes, LcERF 94, LcERF 96, and LcERF 98, were identified as tissue-specific in buds based on the expression profiles of various tissues. These results were further validated via RT-qPCR assays and were highly consistent with the STC analysis. We further investigated the dynamic changes of immature leaves by dissecting fresh shoots into seven discontinuous periods, which were empirically identified as shoot apical meristem (SAM), leaf primordia and tender leaf developmental stages according to the anatomic structure. Subsequently, these three candidates were highly expressed in SAM and leaf primordia but rarely in tender leaves, indicating that they were mainly involved in early leaf development and morphogenesis. Moreover, these three genes displayed nuclear subcellular localizations through the transient transformation of tobacco epidermal cells. Conclusions Overall, we identified 104 AP2/ERF family members at the genome-wide level and discerned three candidate genes that might participate in the development and morphogenesis of the leaf primordium in L. chinense.


Author(s):  
Yasunori Machida ◽  
Takanori Suzuki ◽  
Michiko Sasabe ◽  
Hidekazu Iwakawa ◽  
Shoko Kojima ◽  
...  

AbstractThe ASYMMETRIC LEAVES2 (AS2) gene in Arabidopsis thaliana is responsible for the development of flat, symmetric, and extended leaf laminae and their vein systems. AS2 protein is a member of the plant-specific AS2/LOB protein family, which includes 42 members comprising the conserved amino-terminal domain referred to as the AS2/LOB domain, and the variable carboxyl-terminal region. Among the members, AS2 has been most intensively investigated on both genetic and molecular levels. AS2 forms a complex with the myb protein AS1, and is involved in epigenetic repression of the abaxial genes ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3), ARF4, and class 1 KNOX homeobox genes. The repressed expression of these genes by AS2 is markedly enhanced by the cooperative action of various modifier genes, some of which encode nucleolar proteins. Further downstream, progression of the cell division cycle in the developing organs is stimulated; meristematic states are suppressed in determinate leaf primordia; and the extension of leaf primordia is induced. AS2 binds the specific sequence in exon 1 of ETT/ARF3 and maintains methylated CpGs in several exons of ETT/ARF3. AS2 forms bodies (designated as AS2 bodies) at nucleolar peripheries. AS2 bodies partially overlap chromocenters, including inactive 45S ribosomal DNA repeats, suggesting the presence of molecular and functional links among AS2, the 45S rDNAs, and the nucleolus to exert the repressive regulation of ETT/ARF3. The AS2/LOB domain is characterized by three subdomains, the zinc finger (ZF) motif, the internally conserved-glycine containing (ICG) region, and the leucine-zipper-like (LZL) region. Each of these subdomains is essential for the formation of AS2 bodies. ICG to LZL are required for nuclear localization, but ZF is not. LZL intrinsically has the potential to be exported to the cytoplasm. In addition to its nuclear function, it has been reported that AS2 plays a positive role in geminivirus infection: its protein BV1 stimulates the expression of AS2 and recruits AS2 to the cytoplasm, which enhances virus infectivity by suppression of cytoplasmic post transcriptional gene silencing.


2021 ◽  
Author(s):  
Takaaki Yonekura ◽  
Munetaka Sugiyama

The view is widely accepted that the inhibitory effect of existing leaf primordia on new primordium formation determines phyllotactic patterning. Previous studies have shown that mathematical models based on such inhibitory effect can generate most of phyllotactic patterns. However, a few types of phyllotaxis still remain unaddressed. A notable example is costoid phyllotaxis showing spiromonostichy, which is characterized by a steep spiral with a small divergence angle and is unique to Costaceae plants. Costoid phyllotaxis has been called a "genuine puzzle" because it seems to disagree with the inhibitory effect-based mechanism. In an attempt to produce a steep spiral pattern, we developed a new mathematical model assuming that each leaf primordium emits not only the inhibitory effect but also some inductive effect. Computer simulations with the new model successfully generated a steep spiral pattern when these two effects met a certain relationship. The obtained steep spiral matched the real costoid phyllotaxis observed with Costus megalobractea. We also found by the mathematical model analysis that the early phyllotactic transition in the seedlings of this plant can be explained by the SAM enlargement.


Phytotaxa ◽  
2021 ◽  
Vol 510 (2) ◽  
Author(s):  
YONG-YING LIU ◽  
YU-PING QUAN ◽  
YU-HUAN WU

The form of the gemmae appears to be constant within Bryum species, and it is an important character for distinguishing among closely related species. In this study, we describe a new species of Bryum, B. glacierum Y.Y. Liu & Y.H. Wu, that was collected from Tianshan Mountain in China along with a description of its gemmae. This species is distinguished morphologically by (1) gemmiforfm to julaceous shoots; (2) broadly ovate leaves, strongly concave, with obtuse to acuminate apex, plane and undifferentiated leaf margins, rhombic to rhomboidal distal and medial cells; and (3) dark red-brown, obconic or ovate bulbils with peg-like leaf primordia, densely clustered in the leaf axils of sterile shoots. The new moss species is currently known from two localities in northwestern China. The species seems to prefer high altitudes, growing as a pioneer mainly on ground exposed by retreating glaciers. The principal distinctive characters that separate Bryum glacierum from similar species of Bryum and Pohlia are discussed. An identification key for bulbiferous species of Bryum in China is provided.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazuaki Amikura ◽  
Hiroshi Ito ◽  
Miho S. Kitazawa

AbstractThe developmental patterns of many organisms are orchestrated by the diffusion of factors. Here, we report a novel pattern on plant stems that appears to be controlled by inhibitor diffusion. Prickles on rose stems appear to be randomly distributed, but we deciphered spatial patterns of prickles on Rosa hybrida cv. ‘Red Queen’ stem. The prickles primarily emerged at 90 to 135 degrees from the spiral phyllotaxis that connected leaf primordia. We proposed a simple mathematical model that explained the emergence of the spatial patterns and reproduced the prickle density distribution on rose stems. We confirmed the model can reproduce the observed prickle patterning on stems of other plant species using other model parameters. These results indicated that the spatial patterns of prickles on stems of different plant species are organized by similar systems. Rose cultivation by humans has a long history. However, prickle development is still unclear and this is the first report of prickle spatial pattern with a mathematical model. Comprehensive analysis of the spatial pattern, genome, and metabolomics of other plant species may lead to novel insights for prickle development.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jiseong Jeong ◽  
Sunhee Park ◽  
Jeong Hui Im ◽  
Hankuil Yi

Abstract Background The Gretchen Hagen 3 (GH3) genes encode acyl acid amido synthetases, many of which have been shown to modulate the amount of active plant hormones or their precursors. GH3 genes, especially Group III subgroup 6 GH3 genes, and their expression patterns in economically important B. oleracea var. oleracea have not been systematically identified. Results As a first step to understand regulation and molecular functions of Group III subgroup 6 GH3 genes, 34 GH3 genes including four subgroup 6 genes were identified in B. oleracea var. oleracea. Synteny found around subgroup 6 GH3 genes in B. oleracea var. oleracea and Arabidopsis thaliana indicated that these genes are evolutionarily related. Although expression of four subgroup 6 GH3 genes in B. oleracea var. oleracea is not induced by auxin, gibberellic acid, or jasmonic acid, the genes show different organ-dependent expression patterns. Among subgroup 6 GH3 genes in B. oleracea var. oleracea, only BoGH3.13–1 is expressed in anthers when microspores, polarized microspores, and bicellular pollens are present, similar to two out of four syntenic A. thaliana subgroup 6 GH3 genes. Detailed analyses of promoter activities further showed that BoGH3.13–1 is expressed in tapetal cells and pollens in anther, and also expressed in leaf primordia and floral abscission zones. Conclusions Sixty-two base pairs (bp) region (− 340 ~ − 279 bp upstream from start codon) and about 450 bp region (− 1489 to − 1017 bp) in BoGH3.13–1 promoter are important for expressions in anther and expressions in leaf primordia and floral abscission zones, respectively. The identified anther-specific promoter region can be used to develop male sterile transgenic Brassica plants.


2020 ◽  
Author(s):  
Jiseong Jeong ◽  
Sunhee Park ◽  
Jeong Hui Im ◽  
Hankuil Yi

Abstract Background: The Gretchen Hagen 3 (GH3) genes encode acyl acid amido synthetases, many of which have been shown to modulate the amount of active plant hormones or their precursors. GH3 genes, especially Group Ⅲ subgroup 6 GH3 genes, and their expression patterns in economically important B. oleracea var. oleracea have not been systematically identified. Results: As a first step to understand regulation and molecular functions of Group Ⅲ subgroup 6 GH3 genes, 34 GH3 genes including four subgroup 6 genes were identified in B. oleracea var. oleracea. Synteny found around subgroup 6 GH3 genes in B. oleracea var. oleracea and Arabidopsis thaliana indicated that these genes are evolutionarily related. Although expression of four subgroup 6 GH3 genes in B. oleracea var. oleracea is not induced by auxin, gibberellic acid, or jasmonic acid, the genes show different organ-dependent expression patterns. Among subgroup 6 GH3 genes in B. oleracea var. oleracea, only BoGH3.13-1 is expressed in anthers when microspores, polarized microspores, and bicellular pollens are present, similar to two out of four syntenic A. thaliana subgroup 6 GH3 genes. Detailed analyses of promoter activities further showed that BoGH3.13-1 is expressed in tapetal cells and pollens in anther, and also expressed in leaf primordia and floral abscission zones. Conclusions: Sixty-two base pairs (bp) region (-340 ~ -279 bp upstream from start codon) and about 450 bp region (-1489 to -1017 bp) in BoGH3.13-1 promoter are important for expressions in anther and expressions in leaf primordia and floral abscission zones, respectively. The identified anther-specific promoter region can be used to develop male sterile transgenic Brassica plants.


2020 ◽  
Author(s):  
Jiseong Jeong ◽  
Sunhee Park ◽  
Jeong Hui Im ◽  
Hankuil Yi

Abstract Background: The Gretchen Hagen 3 ( GH3 ) genes encode acyl acid amido synthetases, many of which have been shown to modulate the amount of active plant hormones or their precursors. GH3 genes, especially Group Ⅲ subgroup 6 GH3 genes, and their expression patterns in economically important B. oleracea var. oleracea have not been systematically identified. Results: As a first step to understand regulation and molecular functions of Group Ⅲ subgroup 6 GH3 genes, 34 GH3 genes including four subgroup 6 genes were identified in B. oleracea var. oleracea . Synteny found around subgroup 6 GH3 genes in B. oleracea var. oleracea and Arabidopsis thaliana indicated that these genes are evolutionarily related. Although expression of four subgroup 6 GH3 genes in B. oleracea var. oleracea is not induced by auxin, gibberellic acid, or jasmonic acid, the genes show different organ-dependent expression patterns. Among subgroup 6 GH3 genes in B. oleracea var. oleracea , only BoGH3.13-1 is expressed in anthers when microspores, polarized microspores, and bicellular pollens are present, similar to two out of four syntenic A. thaliana subgroup 6 GH3 genes. Detailed analyses of promoter activities further showed that BoGH3.13-1 is expressed in tapetal cells and pollens in anther, and also expressed in leaf primordia and floral abscission zones. Conclusions: Sixty-two base pairs (bp) region (-340 ~ -279 bp upstream from start codon) and about 450 bp region (-1489 to -1017 bp) in BoGH3.13-1 promoter are important for expressions in anther and expressions in leaf primordia and floral abscission zones, respectively. The identified anther-specific promoter region can be used to develop male sterile transgenic Brassica plants.


Sign in / Sign up

Export Citation Format

Share Document