Turbulent characteristics of flow in the vicinity of mid-channel braid bar

Author(s):  
Mohammad Amir Khan ◽  
Nayan Sharma ◽  
MANISH PANDEY ◽  
Mohd Obaid Qamar

The impact of a mid-channel bar on the turbulent flow structure has been investigated in this research. A new Dominance Function S_(i,H) is proposed in this study as a measure of the relative dominance of ejection and sweep events in turbulent flow structure. Occurrence of the kolk-boil phenomenon is observed due to interaction of ejection and sweep events.. A new parameter Movement Ratio is formulated in this study which is found to faithfully reflect the fluvial processes of sedimentation and scouring on the channel bed.. Acceleration of flow is seen to occur at adjoining regions close to the upstream end of the bar. Due to the presence of the bar, the flow area in its proximity decreases which has caused increment in the velocity at sections located near the upstream end of the mid-channel bar. For model runs with bars, a distinct bulge in the turbulent intensity graph is observed.

2016 ◽  
Vol 12 ◽  
pp. 130-147 ◽  
Author(s):  
Saiyu Yuan ◽  
Hongwu Tang ◽  
Yang Xiao ◽  
Xuehan Qiu ◽  
Huiming Zhang ◽  
...  

2017 ◽  
Vol 122 (6) ◽  
pp. 1278-1293 ◽  
Author(s):  
Alexander N. Sukhodolov ◽  
Julian Krick ◽  
Tatiana A. Sukhodolova ◽  
Zhengyang Cheng ◽  
Bruce L. Rhoads ◽  
...  

Author(s):  
Gong Hee Lee ◽  
Ae Ju Cheong

Spatial discretization errors result from both the numerical order of accuracy of the discretization scheme, and from grid spacing. It is well known that second, or higher, order discretization schemes are potentially able to produce high-quality solutions. In addition, when either the flow is not aligned with the grid, or is complex, it is recommended that the first order discretization scheme not be used for the convection term, if possible. However, the higher-order scheme can also result in convergence difficulties and instabilities at certain flow conditions. In this study, to examine the effect of the numerical order of accuracy of the discretization scheme on the prediction accuracy for the turbulent flow structure inside fuel assembly with the split-type mixing vanes, simulations were conducted with the commercial CFD (Computational Fluid Dynamics) software, ANSYS CFX R.14. Two different types of the discretization scheme for the convection-terms-of-momentum and -turbulence equations, i.e. 1st order upwind scheme and a high resolution scheme, were used. The predicted results were compared with the measured data from MATiS-H (Measurement and Analysis of Turbulent Mixing in Subchannles-Horizontal) facility, installed in the KAERI (Korea Atomic Energy Research Institute).


Sign in / Sign up

Export Citation Format

Share Document