turbulent intensity
Recently Published Documents


TOTAL DOCUMENTS

115
(FIVE YEARS 23)

H-INDEX

18
(FIVE YEARS 1)

2022 ◽  
Vol 14 (2) ◽  
pp. 324
Author(s):  
Jiaxin Liu ◽  
Xiaoquan Song ◽  
Wenrui Long ◽  
Yiyuan Fu ◽  
Long Yun ◽  
...  

The Doppler lidar system can accurately obtain wind profiles with high spatiotemporal resolution, which plays an increasingly important role in the research of atmospheric boundary layers and sea–land breeze. In September 2019, Doppler lidars were used to carry out observation experiments of the atmospheric wind field and pollutants in Shenzhen. Weather Research and Forecasting showed that the topography of Hongkong affected the sea breeze to produce the circumfluence flow at low altitudes. Two sea breezes from the Pearl River Estuary and the northeast of Hong Kong arrived at the observation site in succession, changing the wind direction from northeast to southeast. Based on the wind profiles, the structural and turbulent characteristics of the sea breeze were analyzed. The sea breeze front was accurately captured by the algorithm based on fuzzy logic, and its arrival time was 17:30 on 25 September. The boundary between the sea breeze and the return flow was separated by the edge enhancement algorithm. From this, the height of the sea breeze head (about 1100 m) and the thickness of the sea breeze layer (about 700 m) can be obtained. The fluctuated height of the boundary and the spiral airflow nearby revealed the Kelvin–Helmholtz instability. The influence of the Kelvin–Helmholtz instability could be delivered to the near-surface, which was verified by the spatiotemporal change of the horizontal wind speed and momentum flux. The intensity of the turbulence under the control of the sea breeze was significantly lower than that under the land breeze. The turbulent intensity was almost 0.1, and the dissipation rate was between 10−4 and 10−2 m2·s−3 under the land breeze. The turbulent intensity was below 0.05, and the dissipation rate was between 10−5 and 10−3 m2·s−3 under the sea breeze. The turbulent parameters showed peaks and large gradients at the boundary and the sea breeze front. The peak value of the turbulent intensity was around 0.3, and the dissipation rate was around 0.1 m2·s−3. The round-trip effect of sea–land breeze caused circulate pollutants. The recirculation factor was maintained at 0.5–0.6 at heights where the sea and land breeze alternately controlled (below 600 m), as well as increasing with a decreasing duration of the sea breeze. The factor exceeded 0.9 under the control of the high-altitude breeze (above 750 m). The convergence and rise of the airflow at the front led to collect pollutants, causing a sharp decrease in air quality when the sea breeze front passed.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2151
Author(s):  
Adam Łapiński ◽  
Kamil Śmierciew ◽  
Huiming Zou ◽  
Dariusz Butrymowicz

This paper provides the practical implementation of the single blow technique as an effective approach of average convective heat transfer coefficient measurement for a packed bed of horticultural products. The measurement approach was positively validated for the case of a packed bed of balls. The presented results cover heat transfer coefficient results for carrots stored in packed beds for two various arrangements (regular and irregular) and bed of apples under conditions of various turbulent intensity at the inlet to the bed. The turbulent intensity (defined as the ratio of the root mean square of the turbulent fluctuation of the air velocity to the mean air velocity) varied from 0.02 to 0.14. The applied velocity ranges for the tests refers to the conventional storage conditions. The heat transfer correlations were proposed based on the obtained results for each arrangement. It was demonstrated that due to flow laminarization inside the bed, the turbulence intensity has no significant effect on heat transfer inside the bed. Heat transfer enhancement of up to 25% was demonstrated for the case of the irregular carrot arrangement in the tested bed. The flow resistance correlations were additionally proposed for the tested beds. It was demonstrated that the product arrangement does not produce an important effect on the pressure drop.


2021 ◽  
Vol 21 (20) ◽  
pp. 15949-15968
Author(s):  
Yunshuai Zhang ◽  
Qian Huang ◽  
Yaoming Ma ◽  
Jiali Luo ◽  
Chan Wang ◽  
...  

Abstract. Lake breezes are proved by downdrafts and the divergence flows of zonal wind in the source region of the Yellow River (SRYR) in the daytime based on ERA-Interim reanalysis data. In order to depict the effect of the circulations induced by surface anomaly heating (patches) on the boundary-layer turbulence, the UK Met Office Large Eddy Model was used to produce a set of 1D strip-like surface heat flux distributions based on observations, which were obtained by a field campaign in the Ngoring Lake basin in the summer of 2012. The simulations show that for the cases without background wind, patch-induced circulations (SCs) promote the growth of convective boundary layer (CBL), enhance the turbulent kinetic energy (TKE), and then modify the spatial distribution of TKE. Based on phase-averaged analysis, which separates the attribution from the SCs and the background turbulence, the SCs contribute no more than 10 % to the vertical turbulent intensity, but their contributions to the heat flux can be up to 80 %. The thermal internal boundary layer (TIBL) reduces the wind speed and forms the stable stratification, which produces the obvious change of turbulent momentum flux and heat flux over the heterogeneous surfaces. The increased downdrafts, which mainly occur over the lake patches, carry more warm, dry air down from the free atmosphere. The background wind inhibits the SCs and the development of the CBL; it also weakens the patch-induced turbulent intensity, heat flux, and convective intensity.


Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Liang Liang ◽  
Puhua Tang ◽  
Yu Liu ◽  
Yan Xu

Abstract A magnetically controlled spiral capsule robot is designed. When the robot is running in a pipe filled with mucus, computational fluid dynamics is used to analyze the fluid field (velocity, streamlines, and vorticity) in the pipe, and particle image velocimetry is used to measure the above fluid field surrounding the robot. The measured fluid field is basically similar to the numerical result. The relationship between the operating parameters of the robot and the performance of the robot is further calculated and analyzed. The results show that the resistance to the robot in the forward direction, average turbulent intensity of the fluid surrounding the robot, and maximum fluid pressure to the pipe wall are proportional to the robotic translational speed. The resisting moment of the robot in the forward direction, average turbulent intensity of the fluid surrounding the robot, and maximum fluid pressure to the pipe wall are proportional to the robotic rotational speed.


2021 ◽  
Author(s):  
ANTONIO J. ÁLVAREZ ◽  
FÉLIX NIETO ◽  
KENNY C. S. KWOK ◽  
SANTIAGO HERNÁNDEZ

2021 ◽  
Author(s):  
Yunshuai Zhang ◽  
Qian Huang ◽  
Yaoming Ma ◽  
Jiali Luo ◽  
Chan Wang ◽  
...  

Abstract. Lake breezes are proved by downdrafts and the divergence flows of zonal wind in the source region of the Yellow River in the daytime based on ERA-Interim reanalysis data. In order to depict the effect of the circulations induced by surface anomaly heating (patches) on the boundary-layer turbulence, the large eddy model was used to produce a set of 1D strip-like surface heat flux distributions based on observations, which obtained by a field campaign in the Ngoring Lake Basin in the summer of 2012. The simulations show that for the cases without ambient winds, patch-induced circulations (SCs) enhance the turbulent kinetic energy (TKE) and then modify the spatial distribution of TKE. Based on phase-averaged analysis, which separates the attribution from the SCs and the background turbulence, the SCs contribute no more than 10 % to the vertical turbulent intensity, but their contributions to the heat flux can be up to 80 %. The lake patches produce consistent spatial distributions of wind speed and turbulent stress over the lake–land boundary, and the obvious change of turbulent momentum flux over the boundary of patches can not be neglected. In the entrainment layer, the convective rolls still persist under stronger geostrophic winds of 7–11 m s−1. The increased downdrafts, which mainly occur over the lake patches and carry more warm, dry air down from the free atmosphere. In general, the SCs promote the growth of convective boundary layer, while the background flows inhibit it. The background winds also weaken the patch-induced turbulent intensity, heat flux, and convective intensity.


2021 ◽  
Vol 103 ◽  
pp. 107165
Author(s):  
Narges Taravatrooy ◽  
Farhad Bahmanpouri ◽  
Mohammad Reza Nikoo ◽  
Carlo Gualtieri ◽  
Azizallah Izady

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huiwen Zhang ◽  
Zhen Wu ◽  
Jing Hu ◽  
Zhiping Zhang ◽  
Bin Xiao ◽  
...  

AbstractSand flux is the key factor to determine the migration of sand dunes and the erosion to the surrounding environment. There are crescent-shaped sand dunes of various scales in the desert, and there are significant differences in spatial wind field and sand flux among them. However, due to the difficulty of monitoring, it is difficult to continuously observe the spatial wind field and sand flux around the larger crescentic dunes. On the basis of the Reynolds-Average Navier–Stokes (RA-NS) equation and the stress and sand flux model, the distribution of wind field and sand flux of a circular dune with a height of 4.2 m and a length of about 100 m during the four evolutionary periods of the evolution into a crescentic dune was simulated in this study. By comparing with the measured results, we verified that the closer to the leeward side, the more the simulated values of the velocity in wind field and sand flux were in line with the measured results. In order to further analyze the influence of the height of dune and other relevant parameters on sand flux, we simulated the influence on wind field and sand flux by changing the air viscosity and wind velocity of upper boundary. We found that the air viscosity mainly affected the amount of deposited sand on the leeward side of sand dune, while the increase of wind velocity would undoubtedly increase the sand flux of the whole sand dune. In addition, the simulation results also showed that the influence of changes in height of dune on the turbulent intensity of leeward side was very significant, and the turbulent intensity increased with the height of dune. The height changes of tall dunes gradually affected the transport of sand caused by wind flow behind the leeward side because that the rotation of the wind flow would form new vortexes at the large pores behind the leeward side, which would increase the turbulent energy in space and thus would increase the distance of migration of the lifting sand. While the low sand dunes could not form extra small vortexes at the bottom of the leeward side, so the wind velocity was small and the eddy currents behind the leeward side were more stable. The simulation results indicated that wind velocity was not the only reason for increasing the amount of sand flux, and the fluctuation of wind flow caused by turbulence could also stimulate the movement of sand particles on the ground.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 659
Author(s):  
Haiping Zhang ◽  
Yafei Cui ◽  
Yuehong Zhang ◽  
Hanling Xu ◽  
Feipeng Li

Flow turbulence has been widely accepted as one of the essential factors affecting phytoplankton growth. In this study, laboratory cultures of Microcystis aeruginosa in beakers were carried out under different turbulent conditions to identify the quantitative relationship between the algal growth rate and the turbulent intensity. The turbulent intensity (represented by energy dissipation rate, ε) was simulated with the software FLUENT. Daily measurement of the two parameters (algal biomass and chlorophyll-a concentration) was carried out during the experimental period to represent the algal growth rate. Meanwhile, the rates of photosynthetic oxygen evolution and chlorophyll fluorescence intensity were calculated to investigate the photosynthetic efficiency. The results indicated that the growth rate of Microcystis aeruginosa became higher in the turbulent environment than in the still water environment under the designed experimental conditions. The peak growth rate of Microcystis aeruginosa occurred when ε was 6.44 × 10−2 m2/s3, over which the rate declined, probably due to unfavorable impacts of strong turbulence. In comparison, the maximum rate of photosynthetic oxygen evolution occurred when ε was 0.19 m2/s3. Based on the findings of this study, an exponential function was proposed in order to incorporate the effect of flow turbulence into the existing algal growth models, which usually just consider the impacts of nutrient availability, illumination, and temperature.


Sign in / Sign up

Export Citation Format

Share Document