swirling jet
Recently Published Documents


TOTAL DOCUMENTS

277
(FIVE YEARS 39)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 2119 (1) ◽  
pp. 012023
Author(s):  
A S Nebuchinov

Abstract The aim of this work is to study the effect of different forms of passive change in the shape of the flow on the intensity of heat transfer in the impact jet. In this work, a cycle of experiments was performed to investigate an axisymmetric jet flowing normally onto a heated surface. The jet was located both in natural conditions and during swirling of the flow (S = 0.4; 0.7; 1.0). It is shown that the intensity of heat transfer on a heated target in the case of a chevrons jet has little effect on the character, but significantly intensifies heat transfer. In the case of a swirling jet, the intensity distribution on the wall changes its character and locally increases at small distances between the nozzle and the heater.


2021 ◽  
Vol 5 (4) ◽  
pp. 80
Author(s):  
Jairo Andrés Gutiérrez Suárez ◽  
Alexánder Gómez Mejía ◽  
Carlos Humberto Galeano Urueña

Spray drying is one of many industrial applications that use annular swirling jets. For this particular application, the flow characteristics in the near-field of the jet are fundamental to obtaining high-quality dried products. In this article, an annular swirling jet configuration is numerically studied using three low-cost eddy-resolving turbulence methods: detached-eddy simulation (DES), delayed-DES (DDES) and scale-adaptive simulation (SAS). To focus in industrial applicability, very coarse grids are used. The individual performance of these models is assessed through a comparison with laser-Doppler anemometry (LDA) measurements and large-eddy simulation (LES) data from available studies. Results show that all the three turbulence models are suitable for performing industrial cost-effective simulations, capable of reproducing LES results of mean velocities and first-order turbulence statistics at a fraction of the computational cost. Differences in the results of the evaluated models were minor; however, the simulation with DDES still provided a better reproduction of experimental results, especially in the very-near field of the jet, as it enforced RANS behavior near the inlet walls and a better transition from modeled to resolved scales.


2021 ◽  
Author(s):  
Puyuan Wu ◽  
Ang Li ◽  
Jun Chen ◽  
Paul E. Sojka ◽  
Yang Li ◽  
...  

Abstract As hundreds of millions of Air conditioning (AC) systems are produced each year, and many of them use rotary compressors as the heat pump, optimizing the flow inside the rotary compressor to improve its reliability and efficiency becomes a key issue of the manufactures. Since the invention of the rotary compressor, its internal flow has been studied numerically with real models. However, a rotary compressor’s internal flow can be extremely complicated due to the complex internal structures’ geometry and high-speed moving parts, making it difficult to interpret the result by CFD simulation and repeat the simulation in different models. In our experiments for observing lubricant oil droplets above the rotor/stator in a rotary compressor, droplets’ movement reveals that two major effects control the gas flow in the compressor’s upper cavity. One is the swirling jet produced by the high-speed rotating rotor with no-slip condition on its sidewall. The other one is the rotating disk effect induced by the top of the high-speed rotating rotor. Either of them has been studied individually in different areas. For example, the swirling jet is often used in combustors while the rotating disk is applied in the viscous pump. However, the coupling of these two effects in the rotary compressor with different velocity ranges, size scales, and fluid properties has not been studied according to our best knowledge. In our simulation, a model that only consists of a simplified rotor, simplified stator, sidewall, and discharge tube (outlet) is built. Thus, the effect by small parts, such as the balance block and coils, is excluded. The rotor is set to rotate at 30, 60, and 90 Hz. Uniform velocity calculated with the theoretical flow rate and ambient pressure conditions are given at the inlet (rotor/stator clearance) and outlet, respectively. No-slip conditions are defined at other walls. Steady-state K-ω SST turbulence models are applied, and the cases are computed with OpenFoam. The CFD results show an inner recirculation zone above the rotor that creates a downward velocity component above the rotor and an outer circulation zone above the stator. The CFD result meets the observation of the droplets’ movement above the rotor/stator. With the CFD results and the experiment’s observations, we propose the model of the oil droplet’s path in the rotary compressor’s upper cavity, which can help reduce the exhausted lubricant oil droplets from the compressor.


Author(s):  
Dongyu Wu ◽  
Huaidong Zhang ◽  
Shaohe Zhang ◽  
Jingqiang Tan ◽  
Pinghe Sun ◽  
...  

2021 ◽  
Author(s):  
Fırat Kıyıcı ◽  
Mustafa Perçin

Abstract This experimental study investigates the effect of confinement ratio (CR) on the flow field of a counter-rotating radial-radial swirler. Two-dimensional two-component (2D2C) particle image velocimetry (PIV) measurements are performed at the mid-plane of the jet. Four different confinement ratios (i.e., 10.4, 23.4, 41.6 and unconfined) are considered at a swirl number of 1.2. The results reveal the presence of a central toroidal recirculation zone (CTRZ) in all cases extending inside the jet which indicates the existence of an adverse pressure gradient. For the unconfined swirling jet, the recirculation zone is small in size and exists at the exit of the jet. For the CR = 41.6 case, on the other hand, there exist two separate recirculation zones with the first one being similar to the unconfined case in terms of size and axial position, while the second one being larger in size and positioned at a more downstream location. Variation of the axial velocity along the centerline of the jet for this case indicates the presence of an adverse pressure gradient only in the close-jet region correlated with the first recirculation zone. For the smaller CR values, a single massive CTRZ emerges. This leads to increase in the expansion angle of the swirling jet as the CR decreases. Correspondingly, the radial velocity at the jet exit increases. For the confined cases with a single recirculation zone, the length and the width to cross-section ratio increase with the CR. On the other hand, the ratio of the reverse flow rate to total mass flow rate decreases with increasing CR values.


2021 ◽  
Vol 916 ◽  
Author(s):  
Moritz Sieber ◽  
C. Oliver Paschereit ◽  
Kilian Oberleithner

Abstract


Sign in / Sign up

Export Citation Format

Share Document