scholarly journals Long-term pretreatment with desethylamiodarone (DEA) or amiodarone (AMIO) protects against coronary artery occlusion induced ventricular arrhythmias in conscious rats

2015 ◽  
Vol 93 (9) ◽  
pp. 773-777 ◽  
Author(s):  
Nikolett Morvay ◽  
István Baczkó ◽  
Anita Sztojkov-Ivanov ◽  
György Falkay ◽  
Julius Gy. Papp ◽  
...  

The aim of this investigation was to compare the effectiveness of long-term pretreatment with amiodarone (AMIO) and its active metabolite desethylamiodarone (DEA) on arrhythmias induced by acute myocardial infarction in rats. Acute myocardial infarction was induced in conscious, male, Sprague–Dawley rats by pulling a previously inserted loose silk loop around the left main coronary artery. Long-term oral pretreatment with AMIO (30 or 100 mg·(kg body mass)−1·day−1, loading dose 100 or 300 mg·kg−1 for 3 days) or DEA (15 or 50 mg·kg−1·day−1, loading dose 100 or 300 mg·kg−1 for 3 days), was applied for 1 month before the coronary artery occlusion. Chronic oral treatment with DEA (50 mg·kg−1·day−1) resulted in a similar myocardial DEA concentration as chronic AMIO treatment (100 mg·kg−1·day−1) in rats (7.4 ± 0.7 μg·g−1 and 8.9 ± 2.2 μg·g−1). Both pretreatments in the larger doses significantly improved the survival rate during the acute phase of experimental myocardial infarction (82% and 64% by AMIO and DEA, respectively, vs. 31% in controls). Our results demonstrate that chronic oral treatment with DEA resulted in similar cardiac tissue levels to that of chronic AMIO treatment, and offered an equivalent degree of antiarrhythmic effect against acute coronary artery ligation induced ventricular arrhythmias in conscious rats.

Circulation ◽  
1969 ◽  
Vol 40 (5s4) ◽  
Author(s):  
DONALD B. HACKEL ◽  
E. HARVEY ESTES ◽  
ABE WALSTON ◽  
STEPHEN KOFF ◽  
EUGENE DAY

2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Irene Cuadrado ◽  
Maria Jose Garcia Miguel ◽  
Irene Herruzo ◽  
Mari Carmen Turpin ◽  
Ana Martin ◽  
...  

Extracellular matrix metalloproteinase inducer EMMPRIN, is highly expressed in patients with acute myocardial infarction (AMI), and induces activation of several matrix metalloproteinases (MMPs), including MMP-9 and MMP-13. To prevent Extracellular matrix degradation and cardiac cell death we targeted EMMPRIN with paramagnetic/fluorescent micellar nanoparticles with an EMMPRIN binding peptide AP9 conjugated (NAP9), or an AP9 scramble peptide as a negative control (NAPSC). NAP9 binds to endogenous EMMPRIN as detected by confocal microscopy of cardiac myocytes and macrophages incubated with NAP and NAPSC in vitro, and in vivo in mouse hearts subjected to left anterior descending coronary artery occlusion (IV injection 50mγ/Kg NAP9 or NAP9SC). Administration of NAP9 at the same time or 1 hour after AMI reduced infarct size over a 20% respect to untreated and NAPSC injected mice, recovered left ventricle ejection fraction (LVEF) similar to healthy controls, and reduced EMMPRIN downstream MMP9 expression. In magnetic resonance scans of mouse hearts 2 days after AMI and injected with NAP9, we detected a significant gadolinium enhancement in the left ventricle respect to non-injected mice and to mice injected with NAPSC. Late gadolinium enhancement assays exhibited NAP9-mediated left ventricle signal enhancement as early as 30 minutes after nanoprobe injection, in which a close correlation between the MRI signal enhancement and left ventricle infarct size was detected. Taken together, these results point EMMPRIN targeted nanoprobes as a new tool for the treatment of AMI.


Sign in / Sign up

Export Citation Format

Share Document