THE DECOMPOSITION OF NITROUS OXIDE ON A SILVER CATALYST

1937 ◽  
Vol 15b (6) ◽  
pp. 237-246 ◽  
Author(s):  
E. W. R. Steacie ◽  
H. O. Folkins

The kinetics of the thermal decomposition of nitrous oxide on a silver catalyst has been investigated. The rate of the reaction can be expressed by the equation[Formula: see text]It may therefore be concluded that the nitrous oxide is slightly adsorbed by the catalyst, while oxygen is fairly strongly adsorbed and retards the reaction. Added oxygen affects the reaction in the manner predicted by the rate equation, in contrast to its behavior on a platinum catalyst as previously found by Steacie and McCubbin.

1964 ◽  
Vol 17 (2) ◽  
pp. 202 ◽  
Author(s):  
TN Bell ◽  
JW Hedger

Ammonia is oxidized by nitrous oxide smoothly and homogeneously at temperatures between 658 and 730� and total pressures up to 250 mm. The products of reaction, nitrogen, water, and hydrazine are accounted for by a free-radical mechanism initiated by oxygen atoms which result from the thermal decomposition of nitrous oxide. Ammonia labelled with the 15N-isotope was used to distinguish between the nitrogen formed from the nitrous oxide and that from the ammonia. The kinetics follow an empirical rate equation, ������������� Rate = k'[N2O]1.56 + k"[N2O]0.61[NH3]. This is of a form which shows the importance of the ammonia molecule participating in the activation of nitrous oxide through bimolecular collision. Assigning a collisional efficiency of unity for like N2O-N2O collisions, the efficiency of ammonia in the process ������������ NH3 + N2O → NH3 + N2O* is determined as 0.85.


1956 ◽  
Vol 25 (1) ◽  
pp. 106-115 ◽  
Author(s):  
Frederick Kaufman ◽  
Norman J. Gerri ◽  
Roger E. Bowman

The bimolecular reaction 2N 2 O = 2N 2 + 2N 2 was recently shown to belong to the rather rare class of homogeneous reactions. Decomposition of two molecules of nitrous oxide takes place when a collision of a certain critical degree of violence occurs in the gas. At the moment of collision the two molecules must possess a combined energy of at least 58,000 calories (per 2 gram molecules), and it is probable that most of the collision in which this condition is fulfilled are fruitful. A comparison between the kinetics of this homogeneous decomposition and the corresponding reaction proceeding catalytically at the surface of a solid might be expected to throw light on the mechanism of heterogeneous catalysis. Previous efforts ( loc. cit .) to accelerate the reaction catalytically by the introduction of metals into the bulb in which the homogeneous reaction was going on were fruitless, since the reaction, if any, which took place at the surface of the metal was slow in camparison with the gaseous reaction. This difficulty was overcome by using as a catalyst a fine metal wire heated electrically. This could be raised to a sufficiently high temperature to cause the surface reaction to proceed with measurable velocity while the bulk of the gas was kept cold, thus eliminating the homogeneous reaction. Experiments made with platinum wires in this way were successful. The kinetics of the decomposition of nitrous oxide on the surface of platinum are summarized in the equation – d [N 2 O]/ dt = k [N 2 O]/1 + b [O 2 ]. The reaction is unimolecular, but is complicated by the strong retarding action of the oxygen formed.


In the region of pressure 0 to 500 mrn approximately to the equation the thermal decomposition of nitrous oxide conforms approximately to the equation k = an /1 + a'n + bn , where k is the form al first-order rate constant, — (1/n) d n /d t , n the initial concentration and a, a' and b are nearly constant. Above about 100 m m this expression approximates to k = A + bn , which holds up to several atmospheres. Fresh and more detailed experiments have once again disproved the suggestion that the first term in these expressions is due to a surface reaction. (In certain states of reaction vessels, made of a particular brand of silica, a surface reaction may appear but is immediately recognizable by special criteria, and can be eliminated.) Detailed study of the formation of nitric oxide in the course of the decomposition, and of the effect of inert gas upon this process, shows that side reactions involving oxygen atoms, chain reactions and catalysis by nitric oxide play only minor parts in determining the shape of the k-n curve. The form of this curve, which is an inherent character of the reaction N 2 O = N 2 + O, raises theoretical questions of considerable interest.


Sign in / Sign up

Export Citation Format

Share Document