products of reaction
Recently Published Documents


TOTAL DOCUMENTS

175
(FIVE YEARS 13)

H-INDEX

20
(FIVE YEARS 1)

2022 ◽  
Vol 1247 ◽  
pp. 131320
Author(s):  
Beata Kołodziej ◽  
Burcu Duran ◽  
Maja Morawiak ◽  
Wojciech Schilf

Author(s):  
Mads Peter Sulbaek Andersen ◽  
Joanna Mae Galang Ohide ◽  
Theis Ivan Sølling ◽  
Ole Nielsen

Long path length FTIR-smog chamber techniques were used to study the title reactions in 700 Torr of N2, oxygen or air diluent at 296 ± 2 K. Values of k(Cl...


Author(s):  
Natalia Pino ◽  
Jennifer Quinchia ◽  
Santiago Gómez ◽  
Juan F. Espinal ◽  
Alejandro Montoya ◽  
...  

The hydrodeoxygenation (HDO) of acetophenone was evaluated in liquid phase and gas phase over monometallic Pt/SiO 2 , Co/SiO 2 and bimetallic Pt–Co/SiO 2 catalysts. The influence of reaction time and loading of the catalyst were analysed by following the conversion and products selectivity. Phenylethanol, cyclohexylethanone and cyclohexylethanol are the main products of reaction using the Pt/SiO 2 catalyst. By contrast, ethylbenzene and phenylethanol are the only products formed on the Co/SiO 2 and Pt–Co/SiO 2 catalysts. The bimetallic catalyst is more stable as a function of time and more active towards the HDO process than the monometallic systems. The presence of an organic solvent showed only minor changes in product yields with no effect on the product speciation. Periodic density functional theory analysis indicates a stronger interaction between the carbonyl group of acetophenone with Co than with Pt sites of the mono and bimetallic systems, indicating a key activity of oxophilic sites towards improved selectivity to deoxygenated products. This article is part of the theme issue ‘Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 2)’.


2021 ◽  
Vol 26 (2(78)) ◽  
pp. 89-100
Author(s):  
O. V. Buchko

Intermolecular interactions in the coordination compounds of cation-anionic type [Ni(phen)3][Ge(HCit)2]·2H2O (I), [Co(phen)3][Ge(HCit)2]⋅2H2O (II), [Co(H2O)2(phen)2]2[Ge(Cit)2]·4H2O (III) were characterized using Hirshfeld surface analysis. It was established that the biggest contribution in the Hirshfeld surface of anions have been made by the bonds H … В / О …Н (57,8 % (I), 59,6 % (II), 63,9 % (III)), H … H (28,2 % (I), 24,9 % (II), 31,4 % (III)). At the same time interactions C … H / Н … С are less significant (9,6 %, 11,2 % and 3,2 % for I, II, III, respectively). The calculated percentage contribution of different intermolecular interactions of cations in the crystals showed, that, unlike the anions, contacts H … Н (37,9 % (IА), 38,6 % (IB), 36,2 % (IIА и IIB), 38,8 % (III)) play dominating role, while contribution of H … В / О … Н is less (26,5 % (IA and IB), 28,3 % (IIA), 24,5 % (IIB), 26 2 % (III)). Furthermore, interactions C … H / Н … С are more significant than in anions (24,8 % (IА), 27,2 % (IB), 25,6 % (IIА), 26,2 % (IIB), 21,3 % (III). It is typical for cations to have С …С bonds (5,5 % in average) that give contribution less then 1 %. It was determined that voids volume in the crystals of compounds I–III is 751,74 (I), 778,21 (II) and 423,23 (III) Å3 and surface area is 1772,28 (I), 1821,36 (II) and 628,38 (III) Å2. The total volume of the voids (15 % in I, 15,7 %, in II, 22,4 % in III) testifies the lack of big cavities in the frames of the studied compounds. Thereby analysis of intermolecular interactions with the help of Hirshfeld surface analysis showed the dominating role of hydrogen bonds H … O / O …H and contacts H … H, and minor contribution of C … H / H … C and С … С bonds for all studied compounds. The absence of p-p stacking interactions between aromatic rings of 1,10-phenanthroline in the cations of complexes I–III was also pointed out.


Author(s):  
Yulia Yu. Miroshnichenko ◽  
Anna G. Yarkova ◽  
Irina A. Perederina ◽  
Elena N. Tveryakova ◽  
Galina A. Zholobova

Inorganic nitrile halides have been studied theoretically by quantum-chemical approach and experimentally in the reactions of halogenation, nitration and nitro halogenation of aromatic compounds and alkynes. The generation of nitrile halides was eventually proved can be can be carried out using the iodine system (alkali metal halides) in the presence of alkali metal nitrates in an acetic acid medium. It has been found that the reaction can give the products of iodination, nitration, nitro halogenation, as well as products of cyclization, and oxidation depending on the nature of the halogen. To predict the products of reaction theoretical quantum-chemical calculations for intermediate particles – nitrile halides using the standard Gaussian‑03 software package were carried out. The possibility of NO2Hal formation was approved from quantum calculations. Furthermore the geometry of NO2Hal particles and mechanism of their homo- or heterolytic decay were represented


2021 ◽  
pp. 38-52
Author(s):  
V. Berezovets ◽  
◽  
A. Kytsya ◽  
Yu. Verbovytskyy ◽  
I. Zavaliy ◽  
...  

Magnesium hydride (MgH2) has a high hydrogen storage capacity (7.6 wt%) and the Mg element is abundant on the earth. Due to its strong reduction ability, even at room temperature it can provide the hydrogen yield reaching 15.2 wt% H (1703 mL/g) when interacting with water, which makes it very attractive for the application in supplying hydrogen for autonomous H energy systems. However, the hydrolysis reaction is rapidly inhibited by the Mg(OH)2 passivation layer formed on the surface of MgH2. In order to remove the passivation film and improve the efficiency of the MgH2 hydrolysis process, several methods including alloying, ball milling, changing the aqueous solution, have been successfully utilized. In this paper the process of hydrolysis of magnesium hydride in aqueous solutions of MgCl2 used as a promotor of the interaction has been studied in detail. It was found that the initial hydrolysis rate, pH of the reaction mixture, and overall reaction yield are all linearly dependent of the logarithm of MgCl2 concentration. It has been shown that pH of the reaction mixture in the presence of MgCl2 is well described by considering a system “weak base and its salt with strong acid” type buffer solution. Reference data for this hydrolysis reaction were also carefully analyzed. The mechanism and the kinetic model of the process of MgH2 hydrolysis in water solutions involved passivation of the MgH2 surface by the formed Mg(OH)2 precipitate followed by its repassivation have been proposed. The obtained after the hydrolysis reactions precipitates were studied using XRD and EDS. It was found also that the final products of reaction consist of Mg(OH)2 (brucsite type) and remaining MgH2. This fact shows that the formation of solid species such as MgCl2 xMgO yH2O at the studied conditions is unlikely and decreasing of pH the reaction mixture has a different nature.


2020 ◽  
Vol 17 ◽  
pp. 100212
Author(s):  
Hildegardo S. França ◽  
Alexander Acosta ◽  
Adeel Jamal ◽  
Wanderson Romao ◽  
Jerome Mulloor ◽  
...  

Author(s):  
A. Shoshmin ◽  
V. Grigoriev ◽  
M. Konstantinovskaya

Possibility is investigated and conditions of deactivation of the forbidden polychlorinated are defined pesticides (ZPHP). The method of an oxidizing destruktsiya in conditions appeared the most effective and universal interphase transfer by means of kationny surface-active substances. On the basis of the experimental researches universality and efficiency of a method of deactivation of ZPHP from «dirty dozen» is shown by a way oxidations by their permanganate of potassium in the sour environment at presence katamine AB. Low toxicity of products of reaction after deactivation of pesticides confirmed efficiency of a method.


2020 ◽  
Vol 322 ◽  
pp. 01022
Author(s):  
Teresa Stryszewska ◽  
Marta Dudek

Over the past years, many research projects in the field of construction have been based on the concept of intelligent materials. One example of such materials is self-healing concrete. This material has the ability to repair the damage that occurs, which in concrete materials means filling/closing the cracks formed. This paper describes autonomous concrete that heals itself thanks to modifications with mineral additives. The study used the basic method of evaluating the effectiveness of the healing process, which is visual observation of the material. For this purpose, tests were performed using optical, digital and electron microscopes. In addition to the observations, a chemical analysis of the composition was performed using the EDS detector mounted on the SEM. The findings indicate the ability of filling cracks with accumulating products of reaction with water.


Sign in / Sign up

Export Citation Format

Share Document