surface reaction
Recently Published Documents


TOTAL DOCUMENTS

1652
(FIVE YEARS 247)

H-INDEX

74
(FIVE YEARS 15)

2022 ◽  
Vol 3 ◽  
Author(s):  
Vitalii Starchenko

A fundamental understanding of mineral precipitation kinetics relies largely on microscopic observations of the dynamics of mineral surfaces exposed to supersaturated solutions. Deconvolution of tightly bound transport, surface reaction, and crystal nucleation phenomena still remains one of the main challenges. Particularly, the influence of these processes on texture and morphology of mineral precipitate remains unclear. This study presents a coupling of pore-scale reactive transport modeling with the Arbitrary Lagrangian-Eulerian approach for tracking evolution of explicit solid interface during mineral precipitation. It incorporates a heterogeneous nucleation mechanism according to Classical Nucleation Theory which can be turned “on” or “off.” This approach allows us to demonstrate the role of nucleation on precipitate texture with a focus at micrometer scale. In this work precipitate formation is modeled on a 10 micrometer radius particle in reactive flow. The evolution of explicit interface accounts for the surface curvature which is crucial at this scale in the regime of emerging instabilities. The results illustrate how the surface reaction and reactive fluid flow affect the shape of precipitate on a solid particle. It is shown that nucleation promotes the formation of irregularly shaped precipitate and diminishes the effect of the flow on the asymmetry of precipitation around the particle. The observed differences in precipitate structure are expected to be an important benchmark for reaction-driven precipitation in natural environments.


Author(s):  
Qiao Chen ◽  
Jingyun Weng ◽  
Gabriele Sadowski ◽  
Yuanhui Ji

The influence of temperature, stirring speed, and excipients on crystal growth kinetics of mesalazine and allopurinol was investigated through experiment and chemical potential gradient model. The results indicated that the Diffusion-Surface Reaction model (DSR (1,2)) showed good performance in modeling API crystal growth kinetics within the ARDs of 4%. Excipients played a crucial role in inhibiting crystal growth in all the systems. It can not only improve the API solubility, but also reduce the crystal growth rate. By comparing diffusion rate and surface-reaction rate constant within the DSR (1,2) model, it was found that the controlling step of mesalazine crystallization was surface-reaction. Allopurinol crystallization was dominated by both surface-reaction and diffusion. Meanwhile, the crystal growth kinetics of mesalazine and allopurinol were predicted successfully with the ARDs of 2.53% and 4.78%. This work provided a mechanistic understanding of polymer influence on the inhibition of API crystal growth.


Author(s):  
Julian Ascolani-Yael ◽  
Alejandra Montenegro-Hernandez ◽  
Laura C. Baqué ◽  
Lucía M. Toscani ◽  
Alberto Caneiro ◽  
...  

Abstract This work presents a comparative study of the diffusion (Dchem) and surface exchange coefficients (kchem) of porous La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Co3O4 nanoparticles decorated LSCF electrodes. The study was carried out using the 3DT-EIS method, which combines Electrochemical Impedance Spectroscopy experiments with FIB-SEM tomography data through an adapted Transmission Line - Adler Lane Steele electrochemical model. A reduction of the polarization resistance of about 60% was measured for the Co3O4 decorated LSCF respect to the reference LSCF cathode, in air at 700 °C. The Co3O4 decoration was found to modify the ORR surface reaction limiting mechanism from O2 dissociation to O-ion incorporation, whereas the diffusion coefficient was not modified by the decoration, which represents a surface diffusion process for both electrodes. After the EIS measurements, the Co3O4 particles were almost no longer visible by Field-Emission SEM on the surface of the decorated sample, but signs that these particles play an active role in Sr Segregation were observed by STEM-EDS, in particular by concentrating the segregated SrO in the surroundings of the decorated particles.


Author(s):  
Xiaotian Guo ◽  
Xianhu Liu ◽  
Lei Wang

Photoelectrochemical (PEC) seawater splitting is a promising alternative for solar energy conversion and storage. However, the sluggish surface reaction dynamics and photocorrosion/corrosion generally limit the semiconductors for potential large-scale application....


2022 ◽  
pp. 63-99
Author(s):  
Giovanni Palmisano ◽  
Samar Al Jitan ◽  
Corrado Garlisi

2022 ◽  
Vol 964 (1) ◽  
pp. 012026
Author(s):  
Nguyen Tan Luon ◽  
Le Nguyen Quang Tu ◽  
Nguyen Quang Long

Abstract Silver nanoparticles (AgNPs) are increasingly drawing a great deal of attention because of their exclusive properties and a huge variety of applications. In recent years, using AgNPs supported on various carriers as heterogeneous catalysts has become promising for treating some toxic gases in the environment, such as HCHO. This study has successfully synthesized AgNPs onto ZSM-5 microporous zeolite and ZSM-5 mesopore-modified zeolite (Meso-ZSM-5) by ion-exchange method using sodium borohydride as a reducing agent. The resulting catalysts were then characterized by N2 adsorption-desorption method. In order to evaluate HCHO adsorption, desorption, and the surface reaction of these catalysts, temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) were employed. The TPD and TPSR experiments were conducted with different relative humidity. The results showed that Ag/Meso-ZSM-5 exhibited higher catalyst activity in HCHO complete oxidation than Ag/ZSM-5 at high temperatures because of a new larger pore system within the zeolite. Furthermore, TPD and TPSR experiments provided an explanation for the poor performance of the catalysts at low temperatures, which was associated with the high adsorption capacity of the zeolite.


Sign in / Sign up

Export Citation Format

Share Document