homogeneous reaction
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 27)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Aamir Abbas Khan ◽  
Muhammad Naveed Khan ◽  
Muhammad Ashraf ◽  
Ahmed M. Galal ◽  
Taseer Muhammad ◽  
...  

The main aim of current research work is to examine the impacts of homogeneous/heterogeneous reactions on the three-dimensional second-grade micropolar fluid flow caused by an exponentially stretching Riga plate. The thermal and solutal energy transportation characteristics are observed in the existence of Cattaneo–Christov heat flux, non-uniform heat source/sink and joule heating. Moreover, the features of thermal slip and porous medium are also incorporated in the mathematical model. The dimensionless process is adopted for the conversion of the PDEs into the self-similar form of ordinary differential equations (ODEs). The numerical approach Bvp4c is employed to solve ODEs and a comprehensive discussion is presented of arising physical parameters in this research work. The velocity profile rises as boosting the values of the microrotation parameter. Further, microrotation profiles along with x- and y-axes show decaying behaviour for the higher estimations of microrotation parameters. The homogeneous reaction profile has rising behaviour for higher values of Schmidt number and diminishing for higher estimations of strength homogeneous reaction parameter, respectively.


2021 ◽  
Vol 39 (12) ◽  
pp. 1480-1488
Author(s):  
Zhaozhi Zhou ◽  
Yong Chi ◽  
Yuanjun Tang ◽  
Junpeng Hu

Chlorinated contaminants are a cause of significant concern in the development of municipal solid waste (MSW) thermal treatment techniques. This study investigates the efficacy of two calcium (Ca)-based in-furnace additives, calcium oxide (CaO), and calcined dolomite (CD), at reducing the levels of chlorinated contaminants during MSW thermal treatment. The results reveal that Ca-based additives could effectively reduce the chlorine (Cl) content by more than 76.8% and 37.3% in the gas and tar phases, respectively. The total concentration and the international total equivalent (I-TEQ) value of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-furans (PCDD/Fs) were significantly higher under the incineration condition than pyrolysis and gasification conditions. Adding CaO could reduce the total concentration and the I-TEQ value of PCDD/Fs by more than 43.4% and 36.7%, respectively. The reduction effect on PCDD/Fs was more significant in the gaseous phase and the tar phase than the solid phase. CD was more effective than CaO at reducing the chlorinated contaminants, including hydrogen chloride, Cl in the tar phase, and PCDD/Fs. Thus, adding Ca-based sorbents in the furnace during MSW pyrolysis and gasification can effectively reduce PCDD/Fs generation. Based on the experimental results, the mechanism of Ca-based sorbents on the high-temperature homogeneous reaction of PCDD/Fs formation was analysed.


2021 ◽  
Vol 515 ◽  
pp. 111901
Author(s):  
Guan-Wu Yin ◽  
Shi-Lu Wu ◽  
Jun-Hao Yan ◽  
Peng-Fei Zhang ◽  
Meng-Meng Yang ◽  
...  

Biosensors ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 362
Author(s):  
Ning Xia ◽  
Gang Liu ◽  
Xinyao Yi

The heterogeneous assays of proteases usually require the immobilization of peptide substrates on the solid surface for enzymatic hydrolysis reactions. However, immobilization of peptides on the solid surface may cause a steric hindrance to prevent the interaction between the substrate and the active center of protease, thus limiting the enzymatic cleavage of the peptide. In this work, we reported a heterogeneous surface plasmon resonance (SPR) method for protease detection by integration of homogeneous reaction. The sensitivity was enhanced by the signal amplification of streptavidin (SA)-conjugated immunoglobulin G (SA-IgG). Caspase-3 (Cas-3) was determined as the model. A peptide labeled with two biotin tags at the N- and C-terminals (bio-GDEVDGK-bio) was used as the substrate. In the absence of Cas-3, the substrate peptide was captured by neutravidin (NA)-covered SPR chip to facilitate the attachment of SA-IgG by the avidin-biotin interaction. However, once the peptide substrate was digested by Cas-3 in the aqueous phase, the products of bio-GDEVD and GK-bio would compete with the substrate to bond NA on the chip surface, thus limiting the attachment of SA-IgG. The method integrated the advantages of both heterogeneous and homogeneous assays and has been used to determine Cas-3 inhibitor and evaluate cell apoptosis with satisfactory results.


2021 ◽  
Vol 9 ◽  
Author(s):  
Timan Lei ◽  
Kai H. Luo

Flows with chemical reactions in porous media are fundamental phenomena encountered in many natural, industrial, and scientific areas. For such flows, most existing studies use continuum assumptions and focus on volume-averaged properties on macroscopic scales. Considering the complex porous structures and fluid–solid interactions in realistic situations, this study develops a sophisticated lattice Boltzmann (LB) model for simulating reactive flows in porous media on the pore scale. In the present model, separate LB equations are built for multicomponent flows and chemical species evolutions, source terms are derived for heat and mass transfer, boundary schemes are formulated for surface reaction, and correction terms are introduced for temperature-dependent density. Thus, the present LB model offers a capability to capture pore-scale information of compressible/incompressible fluid motions, homogeneous reaction between miscible fluids, and heterogeneous reaction at the fluid–solid interface in porous media. Different scenarios of density fingering with homogeneous reaction are investigated, with effects of viscosity contrast being clarified. Furthermore, by introducing thermal flows, the solid coke combustion is modeled in porous media. During coke combustion, fluid viscosity is affected by heat and mass transfer, which results in unstable combustion fronts.


2021 ◽  
Author(s):  
Yihang Yu ◽  
Peng Cheng ◽  
Huirong Li ◽  
Wenda Yang ◽  
Baobin Han ◽  
...  

Abstract. Nitrous acid (HONO) can produce hydroxyl radicals (OH) by photolysis and plays an important role in atmospheric photochemistry. Over the years, high concentrations of HONO have been observed in the Pearl River Delta region (PRD) of China, which may be one reason for the elevated atmospheric oxidation capacity. A comprehensive atmospheric observation campaign was conducted at an urban site in Guangzhou from 27 September to 9 November 2018. During the period, HONO was measured from 0.02 to 4.43 ppbv with an average of 0.74 ± 0.70 ppbv. The emission ratios (HONO/NOx) of 0.9 ± 0.4 % were derived from 11 fresh plumes. The primary emission rates of HONO at night were calculated to be between 0.04 ± 0.02 ppbv h−1 and 0.30 ± 0.15 ppbv h−1 based on a high-resolution emission inventory. The HONO formation rate by the homogeneous reaction of OH + NO at night was 0.26 ± 0.08 ppbv h−1, which can be seen as secondary results from primary emission. They were both much higher than the increase rate of HONO (0.02 ppbv h−1) during night. Soil emission rate of HONO at night was calculated to be 0.019 ± 0.001 ppbv h−1. Assuming dry deposition as the dominant removal process of HONO at night, and a deposition velocity of at least ~2.5 cm s−1 is required to balance the direct emissions and OH + NO reaction. Correlation analysis shows that NH3 and relative humidity (RH) may participate in the heterogeneous transformation from NO2 to HONO at night. In the daytime, the average primary emission Pemis was 0.12 ± 0.01 ppbv h−1, and the homogeneous reaction POH + NO was 0.79 ± 0.61 ppbv h−1, larger than the unknown sources PUnknown (0.65 ± 0.46 ppbv h−1). These results suggest primary emissions as a key factor affecting HONO at our site, both during daytime and nighttime. Similar to previous studies, the daytime unknown source of HONO, PUnknown, appeared to be related to the photo-enhanced conversion of NO2. The daytime average OH production rates by photolysis of HONO was 3.7 × 106 cm−3 s−1, lower than that from O1D + H2O at 4.9 × 106 cm−3 s−1. Simulations of OH and O3 with the Master Chemical Mechanism (MCM) box model suggested strong enhancement effect of HONO on OH and O3 by 59 % and 68.8 %, respectively, showing a remarkable contribution of HONO to the atmospheric oxidation in the fall season of Guangzhou.


Sign in / Sign up

Export Citation Format

Share Document