An anchored AFLP- and retrotransposon-based map of diploid Avena

Genome ◽  
2000 ◽  
Vol 43 (5) ◽  
pp. 736-749 ◽  
Author(s):  
Gong-Xin Yu ◽  
Roger P Wise

A saturated genetic map of diploid oat was constructed based on a recombinant inbred (RI) population developed from a cross between Avena strigosa (Cereal Introduction, C.I. 3815) and A. wiestii (C.I. 1994). This 513-locus map includes 372 AFLP (amplified fragment length polymorphism) and 78 S-SAP (sequence-specific-amplification polymorphism) markers, 6 crown-rust resistance loci, 8 resistance-gene analogs (RGAs), one morphological marker, one RAPD (random amplified polymorphic DNA) marker, and is anchored by 45 grass-genome RFLP (restriction fragment length polymorphism) markers. This new A. strigosa × A. wiestii RI map is colinear with a diploid Avena map from an A. atlantica × A. hirtula F2 population. However, some linkage blocks were rearranged as compared to the RFLP map derived from the progenitor A. strigosa × A. wiestii F2 population. Mapping of Bare-1-like sequences via sequence-specific AFLP indicated that related retrotransposons had considerable heterogeneity and widespread distribution in the diploid Avena genome. Novel amplified fragments detected in the RI population suggested that some of these retrotransposon-like sequences are active in diploid Avena. Three markers closely linked to the Pca crown-rust resistance cluster were identified via AFLP-based bulk-segregant analysis. The derived STS (sequence-tagged-site) marker, Agx4, cosegregates with Pc85, the gene that provides resistance specificity to crown-rust isolate 202 at the end of the cluster. This framework map will be useful in gene cloning, genetic mapping of qualitative genes, and positioning QTL (quantitative trait loci) of agricultural importance.Key words: AFLP, Bare-1 retrotransposon, sequence-specific-amplification polymorphism (S-SAP), resistance-gene analog, crown-rust resistance, Pca, Gramineae, grass anchor probe.

1998 ◽  
Vol 11 (3) ◽  
pp. 242-245 ◽  
Author(s):  
Donna E. Delaney ◽  
Craig A. Webb ◽  
Scot H. Hulbert

The Rp8 rust resistance locus of maize is unique in that only Rp8-A/Rp8-B heterozygotes provide resistance and homozygotes are susceptible. A third allele, Rp8-C, provides no resistance in homozygotes or heterozygous combinations. Rp8 maps to the long arm of chromosome 6, near the restriction fragment length polymorphism marker umc21.


Genome ◽  
1991 ◽  
Vol 34 (6) ◽  
pp. 1021-1027 ◽  
Author(s):  
Ilan Paran ◽  
Richard Kesseli ◽  
Richard Michelmore

Near-isogenic lines were used to identify restriction fragment length polymorphism (RFLP) and random amplified polymorphic DNA (RAPD) markers linked to genes for resistance to downy mildew (Dm) in lettuce. Two pairs of near-isogenic lines that differed for Dm1 plus Dm3 and one pair of near-isogenic lines that differed for Dm11 were used as sources of DNA. Over 500 cDNAs and 212 arbitrary 10-mer oligonucleotide primers were screened for their ability to detect polymorphism between the near-isogenic lines. Four RFLP markers and four RAPD markers were identified as linked to the Dm1 and Dm3 region. Dm1 and Dm3 are members of a cluster of seven Dm genes. Marker CL922 was absolutely linked to Dm15 and Dm16, which are part of this cluster. Six RAPD markers were identified as linked to the Dm11 region. The use of RAPD markers allowed us to increase the density of markers in the two Dm regions in a short time. These regions were previously only sparsely populated with RFLP markers. The rapid screening and identification of tightly linked markers to the target genes demonstrated the potential of RAPD markers for saturating genetic maps.Key words: lettuce, downy mildew, near-isogenic lines, disease resistance, restriction fragment length polymorphism, random amplified polymorphic DNA.


2000 ◽  
Vol 90 (6) ◽  
pp. 565-567 ◽  
Author(s):  
Alan T. Dyer ◽  
Kurt J. Leonard

Random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) are widely used in studies of genetic variation. Although it is recognized that contamination should be avoided in DNA samples, little is known about the potential hazards of low level bacterial contamination of samples from which DNA is extracted for RAPD or AFLP analyses. We found that contamination of Aphanomyces cochlioides cultures with a prokaryote at visibly undetectable levels markedly altered the results of RAPD and AFLP analyses. The contamination resulted in seven contaminant-specific RAPD products and in the suppression of eight products characteristic of uncontaminated A. cochlioides cultures. Prokaryote contamination resulted in 39 contaminant-specific AFLP products, but did not cause suppression of AFLP products. Comparing A. cochlioides samples with outgroup A. euteiches did not clearly indicate the presence of contaminant DNA, because uneven product suppression in RAPD analysis increased the apparent similarity between contaminated samples and A. euteiches and because a high proportion of the contaminant-specific amplified products comigrated with products from A. euteiches in both RAPD and AFLP analyses. Work with organisms that are prone to contamination should employ techniques such as restriction fragment length polymorphism or DNA sequence comparisons rather than relying solely on RAPD or AFLP analyses.


2020 ◽  
Vol 133 (4) ◽  
pp. 1109-1122 ◽  
Author(s):  
Jun Zhao ◽  
Aida Z. Kebede ◽  
Jim G. Menzies ◽  
Edyta Paczos-Grzęda ◽  
James Chong ◽  
...  

Crop Science ◽  
2006 ◽  
Vol 46 (6) ◽  
pp. 2630-2635 ◽  
Author(s):  
D. L. Hoffman ◽  
J. Chong ◽  
E. W. Jackson ◽  
D. E. Obert

Sign in / Sign up

Export Citation Format

Share Document