resistance specificity
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Paul Schmid-Hempel

Parasites are ubiquitous and shape almost every aspect of their hosts, including physiology, behaviour, life histories, the structure of the microbiota, and entire communities. Hence, parasitism is one of the most potent forces in nature and, without parasites, the world would look very different. The book gives an overview over the parasite groups and the diversity of defences that hosts have evolved, such as immune systems. Principles of evolutionary biology and ecology analyse major elements of host–parasite interactions, including virulence, infection processes, tolerance, resistance, specificity, memory, polymorphisms, within-host dynamics, diseases spaces, and many other aspects. Genetics is always one of the key elements in these topics. Modelling, furthermore, can predict best strategies for host and parasites. Similarly, the spread of an infectious disease in epidemiology combines with molecular data and genomics. Furthermore, parasites have evolved ways to overcome defences and to manipulate their hosts. Hosts and parasites, therefore, continuously co-evolve, with changes sometimes occurring very rapidly, and sometimes requiring geological times. Many infectious diseases of humans have emerged from a zoonotic origin, in processes governed by the basic principles discussed in the different sections. Hence, this book integrates different fields to study the diversity of host–parasite processes and phenomena. It summarizes the essential topics for the study of evolutionary parasitology and will be useful for a broad audience.


2021 ◽  
Vol 17 (3) ◽  
pp. e1009368
Author(s):  
Juan Carlos De la Concepcion ◽  
Josephine H. R. Maidment ◽  
Apinya Longya ◽  
Gui Xiao ◽  
Marina Franceschetti ◽  
...  

Arms race co-evolution drives rapid adaptive changes in pathogens and in the immune systems of their hosts. Plant intracellular NLR immune receptors detect effectors delivered by pathogens to promote susceptibility, activating an immune response that halts colonization. As a consequence, pathogen effectors evolve to escape immune recognition and are highly variable. In turn, NLR receptors are one of the most diverse protein families in plants, and this variability underpins differential recognition of effector variants. The molecular mechanisms underlying natural variation in effector recognition by NLRs are starting to be elucidated. The rice NLR pair Pik-1/Pik-2 recognizes AVR-Pik effectors from the blast fungus Magnaporthe oryzae, triggering immune responses that limit rice blast infection. Allelic variation in a heavy metal associated (HMA) domain integrated in the receptor Pik-1 confers differential binding to AVR-Pik variants, determining resistance specificity. Previous mechanistic studies uncovered how a Pik allele, Pikm, has extended recognition to effector variants through a specialized HMA/AVR-Pik binding interface. Here, we reveal the mechanistic basis of extended recognition specificity conferred by another Pik allele, Pikh. A single residue in Pikh-HMA increases binding to AVR-Pik variants, leading to an extended effector response in planta. The crystal structure of Pikh-HMA in complex with an AVR-Pik variant confirmed that Pikh and Pikm use a similar molecular mechanism to extend their pathogen recognition profile. This study shows how different NLR receptor alleles functionally converge to extend recognition specificity to pathogen effectors.


2021 ◽  
Vol 118 (5) ◽  
pp. e2010243118 ◽  
Author(s):  
Antonio Molina ◽  
Eva Miedes ◽  
Laura Bacete ◽  
Tinguaro Rodríguez ◽  
Hugo Mélida ◽  
...  

Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.


Author(s):  
Zhizheng Wang ◽  
Jin Huang ◽  
Lingyun Nie ◽  
Yinxia Hu ◽  
Ning Zhang ◽  
...  

Abstract The brown planthopper (Nilaparvata lugens Stål, BPH) resistance gene BPH9 encodes an unusual coiled-coil (CC) nucleotide-binding leucine-rich repeat (LRR) protein with two NBS (Nuceotide binding site) domains. To understand how this CC-NBS-NBS-LRR protein regulates defense signaling and BPH resistance, we dissected each domain’s functions. The CC domain of BPH9 self-associated and was sufficient to induce cell death. The region of 97-115 residues in CC domain is crucial for self-association and activation. NBS2, which contains a complete set of NBS function motifs and inhibits CC domain activation, rather than NBS1, acts as a molecular switch to regulate the activity of BPH9. We demonstrated that the CC domain, the NBS domain and LRR domains of BPH9 associate with each other and themselves in planta. Further domain swapping experiments revealed the CC domains of BPH9 and susceptible alleles were similarly competent to induce resistance and HR (Hypersensitive response), while the LRR domain of BPH9 confers resistance specificity to BPH. These findings provide new insights into the regulatory mechanisms governing the activity of CNNL proteins.


2020 ◽  
Vol 65 (1) ◽  
pp. e02242-20
Author(s):  
Vladimir Vimberg ◽  
Jorunn Pauline Cavanagh ◽  
Michaela Novotna ◽  
Jakub Lenart ◽  
Bich Nguyen Thi Ngoc ◽  
...  

2020 ◽  
Vol 64 (11) ◽  
Author(s):  
Vladimir Vimberg ◽  
Jorunn Pauline Cavanagh ◽  
Michaela Novotna ◽  
Jakub Lenart ◽  
Bich Nguyen Thi Ngoc ◽  
...  

ABSTRACT Vga(A) protein variants confer different levels of resistance to lincosamides, streptogramin A, and pleuromutilins (LSAP) by displacing antibiotics from the ribosome. Here, we show that expression of vga(A) variants from Staphylococcus haemolyticus is regulated by cis-regulatory RNA in response to the LSAP antibiotics by the mechanism of ribosome-mediated attenuation. The specificity of induction depends on Vga(A)-mediated resistance rather than on the sequence of the riboregulator. Fine tuning between Vga(A) activity and its expression in response to the antibiotics may contribute to the selection of more potent Vga(A) variants because newly acquired mutation can be immediately phenotypically manifested.


2020 ◽  
Author(s):  
Antonio Molina ◽  
Eva Miedes ◽  
Laura Bacete ◽  
Tinguaro Rodríguez ◽  
Hugo Mélida ◽  
...  

AbstractPlant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues, and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus and a biotrophic oomycete. Remarkably, most cwm mutants tested (31/38; 81.6%) showed alterations in their resistance responses to at least one of these pathogens, in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted on cwm fitness traits, like biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or Microbe-Associated Molecular Patterns, which are not de-regulated in all cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in other plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.


Sign in / Sign up

Export Citation Format

Share Document