The propagation of a transverse electromagnetic wave in a nonlinear, anisotropic, time-dependent plasma medium

1968 ◽  
Vol 46 (7) ◽  
pp. 889-905
Author(s):  
Robert J. Papa

In a previous paper, a one-dimensional, inhomogeneous model was considered in describing the nonlinear interaction of a radiofrequency plane wave with a time-varying plasma. This paper extends the analysis to the anisotropic case, in which an elliptically polarized plane wave incident upon an electron-density profile induces changes in the electron density and electron temperature. A d-c. magnetic field parallel to the electron-density gradients causes the elliptically polarized wave to split into two distinct modes, a right-hand circularly polarized and a left-hand circularly polarized mode. The two modes are coupled through an energy-balance equation that governs the behavior of the electron temperature. The time-dependent response of the plasma may be found by numerically integrating an energy-balance equation and a continuity equation. The solution to the wave equation for the time-varying, inhomogeneous, anisotropic medium may be obtained through the use of the WKB approximation. The time scales for electron-temperature and electron-density changes are found to vary with incident flux, incident-wave ellipticity, and appropriate normalized plasma parameters.

1965 ◽  
Vol 43 (1) ◽  
pp. 38-56 ◽  
Author(s):  
Robert J. Papa

A one-dimensional, inhomogeneous model is used to describe the nonlinear interaction of a radio-frequency plane wave with a time-varying plasma medium. A monochromatic plane wave is normally incident upon an electron density profile where the electron density gradients are shallow compared to a wavelength. Changes in electron temperature and electron density are induced which continually alter the pattern of electromagnetic energy deposition into the medium. The electron energy relaxation time is much longer than the period of the electromagnetic wave, so that the electron temperature does not follow the rapid variations in the impressed field. A nonlinear constitutive relationship is derived relating the macroscopic current density to the impressed electric vector, assuming that the wave field is almost monochromatic in the medium. The time-dependent response of the plasma medium may be found by numerically solving the energy-balance equations and the continuity equation for the electron gas. The spread in frequency of the electromagnetic wave field due to the time-varying electrical conductivity may be computed by employing the WKB approximation as a solution to the wave equation for a time-varying medium. Graphs are presented which represent the time-dependent response of the electron temperature and electron density as a function of the incident r-f. field amplitude.


Author(s):  
Shaun Lovejoy ◽  
Roman Procyk ◽  
Raphael Hébert ◽  
Lenin Del Rio Amador

2021 ◽  
Author(s):  
Roman Procyk ◽  
Shaun Lovejoy ◽  
Raphaël Hébert ◽  
Lenin Del Rio Amador

<p>We present the Fractional Energy Balance Equation (FEBE): a generalization of the standard EBE.  The key FEBE novelty is the assumption of a hierarchy of energy storage mechanisms: scaling energy storage.  Mathematically the storage term is of fractional rather than integer order.  The special half-order case (HEBE) can be classically derived from the continuum mechanics heat equation used by Budyko and Sellers simply by introducing a vertical coordinate and using the correct conductive-radiative surface boundary conditions (the FEBE is a mild extension).</p><div> <p>We use the FEBE to determine the temperature response to both historical forcings and to future scenarios.  Using historical data, we estimate the 2 FEBE parameters: its scaling exponent (<em>H</em> = 0.38±0.05; <em>H</em> = 1 is the standard EBE) and relaxation time (4.7±2.3 years, comparable to box model relaxation times). We also introduce two forcing parameters: an aerosol re-calibration factor, to account for their large uncertainty, and a volcanic intermittency exponent so that the intermittency volcanic signal can be linearly related to the temperature. The high frequency FEBE regime not only allows for modelling responses to volcanic forcings but also the response to internal white noise forcings: a theoretically motivated error model (approximated by a fractional Gaussian noise). The low frequency part uses historical data and long memory for climate projections, constraining both equilibrium climate sensitivity and historical aerosol forcings. <span>Parameters are estimated in a Bayesian framework using 5 global observational temperature series, and an error model which is a theoretical consequence of the FEBE forced by a Gaussian white noise.</span></p> <p>Using the CMIP5 Representative Concentration Pathways (RCPs) and CMIP6 Shared Socioeconomic Pathways (SSPs) scenario, the FEBE projections to 2100 are shown alongside the CMIP5 MME. The Equilibrium Climate Sensitivity = 2.0±0.4 <sup>o</sup>C/CO<sub>2</sub> doubling implies slightly lower temperature increases.   However, the FEBE’s 90% confidence intervals are about half the CMIP5 size so that the new projections lie within the corresponding CMIP5 MME uncertainties so that both approaches fully agree.   The mutually agreement of qualitatively different approaches, gives strong support to both.  We also compare both generations of General Circulation Models (GCMs) outputs from CMIP5/6 alongside with the projections produced by the FEBE model which are entirely independent from GCMs, contributing to our understanding of forced climate variability in the past, present and future.</p> <p>Following the same methodology, we apply the FEBE to regional scales: estimating model and forcing parameters to produce climate projections at 2.5<sup>o</sup>x2.5<sup>o</sup> resolutions. We compare the spatial patterns of climate sensitivity and projected warming between the FEBE and CMIP5/6 GCMs. </p> </div>


Sign in / Sign up

Export Citation Format

Share Document