Statistical mechanics of quantum one-dimensional damped harmonic oscillator

1985 ◽  
Vol 63 (5) ◽  
pp. 600-604 ◽  
Author(s):  
E. N. M. Borges ◽  
O. N. Borges ◽  
L. A. Amarante Ribeiro

We calculate the thermal correlation functions of the one-dimensional damped harmonic oscillator in contact with a reservoir, in an exact form by applying Green's function method. In this way the thermal fluctuations are incorporated in the Caldirola–Kanai Hamiltonian.

2002 ◽  
Vol 80 (6) ◽  
pp. 645-660 ◽  
Author(s):  
M Blasone ◽  
P Jizba

We quantize the system of a damped harmonic oscillator coupled to its time-reversed image, known as Bateman's dual system. By using the Feynman–Hibbs method, the time-dependent quantum states of such a system are constructed entirely in the framework of the classical theory. The geometric phase is calculated and found to be proportional to the ground-state energy of the one-dimensional linear harmonic oscillator to which the two-dimensional system reduces under appropriate constraint. PACS Nos.: 03.65Ta, 03.65Vf, 03.65Ca, 03.65Fd


2018 ◽  
Vol 64 (1) ◽  
pp. 47
Author(s):  
Francis Segovia-Chaves

In this paper, the solution to the Hamilton-Jacobi equation for the one-dimensional harmonic oscillator damped with the Caldirola-Kanai model is presented. Making use of a canonical transformation, we calculate the Hamilton characteristic function. It was found that the position of the oscillator shows an exponential decay similar to that of the oscillator with damping where the decay is more pronounced when increasing the damping constant γ. It is shown that when γ = 0, the behavior is of an oscillator with simple harmonic motion. However, unlike the damped harmonic oscillator where the linear momentum decays with time, in the case of the oscillator with the Caldirola-KanaiHamiltonian, the momentum increases as time increases due to an exponential growth of the mass m(t) = meγt.


2011 ◽  
Vol 110-116 ◽  
pp. 3750-3754
Author(s):  
Jun Lu ◽  
Xue Mei Wang ◽  
Ping Wu

Within the framework of the quantum phase space representation established by Torres-Vega and Frederick, we solve the rigorous solutions of the stationary Schrödinger equations for the one-dimensional harmonic oscillator by means of the quantum wave-mechanics method. The result shows that the wave mechanics and the matrix mechanics are equivalent in phase space, just as in position or momentum space.


2014 ◽  
Vol 28 (29) ◽  
pp. 1450201
Author(s):  
Seung Ki Baek ◽  
Hawoong Jeong ◽  
Seung-Woo Son ◽  
Beom Jun Kim

The investigation of random walks is central to a variety of stochastic processes in physics, chemistry and biology. To describe a transport phenomenon, we study a variant of the one-dimensional persistent random walk, which we call a zero-one-only process. It makes a step in the same direction as the previous step with probability p, and stops to change the direction with 1 − p. By using the generating-function method, we calculate its characteristic quantities such as the statistical moments and probability of the first return.


Sign in / Sign up

Export Citation Format

Share Document