jacobi equation
Recently Published Documents


TOTAL DOCUMENTS

534
(FIVE YEARS 76)

H-INDEX

29
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Владислав Хаблов

In this paper we analyze the asymptotics of the Schrödinger equation solutions with respect to a small parameter ~. It is well known, that short- waveasymptoticstosolutionsofthisequationleadstothepairofequations— the Hamilton–Jacobi equation for the phase and the continuity equation. These equations coincide with the ones for the potential flows of an ideal fluid. The wave function is invariant with respect to the complex plane rotations group, and the asymptotics is constructed as a point-dependent action of this group on some function that is found by solving the transfer equation. It is shown in the paper, that if the Heisenberg group is used instead of the rotation group, then the limit of the equations solutions with ~ tending to zero leads to the equations for vortex flows of an ideal fluid in a potential field of forces. If the original Schrödinger equation is nonlinear, then equations for barotropic processes in an ideal fluid are obtained.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 473
Author(s):  
Joshua Baines ◽  
Thomas Berry ◽  
Alex Simpson ◽  
Matt Visser

Recently, the authors have formulated and explored a novel Painlevé–Gullstrand variant of the Lense–Thirring spacetime, which has some particularly elegant features, including unit-lapse, intrinsically flat spatial 3-slices, and some particularly simple geodesics—the “rain” geodesics. At the linear level in the rotation parameter, this spacetime is indistinguishable from the usual slow-rotation expansion of Kerr. Herein, we shall show that this spacetime possesses a nontrivial Killing tensor, implying separability of the Hamilton–Jacobi equation. Furthermore, we shall show that the Klein–Gordon equation is also separable on this spacetime. However, while the Killing tensor has a 2-form square root, we shall see that this 2-form square root of the Killing tensor is not a Killing–Yano tensor. Finally, the Killing-tensor-induced Carter constant is easily extracted, and now, with a fourth constant of motion, the geodesics become (in principle) explicitly integrable.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Javier Pérez Álvarez

AbstractThe Lagrange–Charpit theory is a geometric method of determining a complete integral by means of a constant of the motion of a vector field defined on a phase space associated to a nonlinear PDE of first order. In this article, we establish this theory on the symplectic structure of the cotangent bundle $$T^{*}Q$$ T ∗ Q of the configuration manifold Q. In particular, we use it to calculate explicitly isotropic submanifolds associated with a Hamilton–Jacobi equation.


2021 ◽  
Vol 14 (4) ◽  
pp. 301-308

Abstract: This manuscript aims at solving Hamilton-Jacobi equation in a central potential using the separation of variables technique with Staeckel boundary conditions. Our results show that the Hamilton – Jacobi variables can be completely separated, which agrees with other results employing different methods. Keywords: Lagrangian mechanics, Hamilton-Jacobi, Staeckel boundary conditions, Staeckel matrix, Staeckel vector, Hamilton's characteristic function, Hamilton's principal function.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1993
Author(s):  
Manuel de León ◽  
Manuel Lainz ◽  
Álvaro Muñiz-Brea

The aim of this paper is to develop a Hamilton–Jacobi theory for contact Hamiltonian systems. We find several forms for a suitable Hamilton–Jacobi equation accordingly to the Hamiltonian and the evolution vector fields for a given Hamiltonian function. We also analyze the corresponding formulation on the symplectification of the contact Hamiltonian system, and establish the relations between these two approaches. In the last section, some examples are discussed.


Author(s):  
Piermarco Cannarsa ◽  
Wei Cheng ◽  
Albert Fathi

AbstractIf $U:[0,+\infty [\times M$ U : [ 0 , + ∞ [ × M is a uniformly continuous viscosity solution of the evolution Hamilton-Jacobi equation $$ \partial _{t}U+ H(x,\partial _{x}U)=0, $$ ∂ t U + H ( x , ∂ x U ) = 0 , where $M$ M is a not necessarily compact manifold, and $H$ H is a Tonelli Hamiltonian, we prove the set $\Sigma (U)$ Σ ( U ) , of points in $]0,+\infty [\times M$ ] 0 , + ∞ [ × M where $U$ U is not differentiable, is locally contractible. Moreover, we study the homotopy type of $\Sigma (U)$ Σ ( U ) . We also give an application to the singularities of the distance function to a closed subset of a complete Riemannian manifold.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Krzysztof Pilch ◽  
Robert Walker ◽  
Nicholas P. Warner

Abstract The separability of the Hamilton-Jacobi equation has a well-known connection to the existence of Killing vectors and rank-two Killing tensors. This paper combines this connection with the detailed knowledge of the compactification metrics of consistent truncations on spheres. The fact that both the inverse metric of such compactifications, as well as the rank-two Killing tensors can be written in terms of bilinears of Killing vectors on the underlying “round metric,” enables us to perform a detailed analyses of the separability of the Hamilton-Jacobi equation for consistent truncations. We introduce the idea of a separating isometry and show that when a consistent truncation, without reduction gauge vectors, has such an isometry, then the Hamilton-Jacobi equation is always separable. When gauge vectors are present, the gauge group is required to be an abelian subgroup of the separating isometry to not impede separability. We classify the separating isometries for consistent truncations on spheres, Sn, for n = 2, …, 7, and exhibit all the corresponding Killing tensors. These results may be of practical use in both identifying when supergravity solutions belong to consistent truncations and generating separable solutions amenable to scalar probe calculations. Finally, while our primary focus is the Hamilton-Jacobi equation, we also make some remarks about separability of the wave equation.


Sign in / Sign up

Export Citation Format

Share Document