Digital simulation of photoacoustic impulse responses

1986 ◽  
Vol 64 (9) ◽  
pp. 1049-1052 ◽  
Author(s):  
Richard M. Miller

Impulse-response photoacoustic spectroscopy provides information on the depth distribution of chromophores in solid samples. To gain an understanding of the way in which sample properties affect the impulse response, a digital model has been generated. This model is based on discretization of time and space coupled with a finite-difference approximation of the governing heat-diffusion equations. The simulations are compared with experimental results.

Author(s):  
Mani Mehra ◽  
Kuldip Singh Patel ◽  
Ankita Shukla

AbstractIn this article, compact finite difference approximations for first and second derivatives on the non-uniform grid are discussed. The construction of diffusion wavelets using compact finite difference approximation is presented. Adaptive grids are obtained for non-smooth functions in one and two dimensions using diffusion wavelets. High-order accurate wavelet-optimized compact finite difference (WOCFD) method is developed to solve convection–diffusion equations in one and two dimensions on an adaptive grid. As an application in option pricing, the solution of Black–Scholes partial differential equation (PDE) for pricing barrier options is obtained using the proposed WOCFD method. Numerical illustrations are presented to explain the nature of adaptive grids for each case.


2012 ◽  
Vol 12 (1) ◽  
pp. 193-225 ◽  
Author(s):  
N. Anders Petersson ◽  
Björn Sjögreen

AbstractWe develop a stable finite difference approximation of the three-dimensional viscoelastic wave equation. The material model is a super-imposition of N standard linear solid mechanisms, which commonly is used in seismology to model a material with constant quality factor Q. The proposed scheme discretizes the governing equations in second order displacement formulation using 3N memory variables, making it significantly more memory efficient than the commonly used first order velocity-stress formulation. The new scheme is a generalization of our energy conserving finite difference scheme for the elastic wave equation in second order formulation [SIAM J. Numer. Anal., 45 (2007), pp. 1902-1936]. Our main result is a proof that the proposed discretization is energy stable, even in the case of variable material properties. The proof relies on the summation-by-parts property of the discretization. The new scheme is implemented with grid refinement with hanging nodes on the interface. Numerical experiments verify the accuracy and stability of the new scheme. Semi-analytical solutions for a half-space problem and the LOH.3 layer over half-space problem are used to demonstrate how the number of viscoelastic mechanisms and the grid resolution influence the accuracy. We find that three standard linear solid mechanisms usually are sufficient to make the modeling error smaller than the discretization error.


Sign in / Sign up

Export Citation Format

Share Document