Stress–strain behaviour of sands in triaxial and direct simple shear tests

1991 ◽  
Vol 28 (2) ◽  
pp. 276-281 ◽  
Author(s):  
Gianni Rossato ◽  
Paolo Simonini

The behaviour of a natural sand in triaxial compression and direct simple shear tests was compared by means of dimensionless analysis of parameters controlling the evolution of stresses and strains. The secant triaxial compression and direct simple shear moduli were interpreted in a dimensionless form. A criterion based on the equivalence between major principal strain in the two tests was considered to compare the results. Key words: sand, stress–strain behaviour, triaxial test, direct simple shear test, shear modulus, triaxial compression modulus.

2015 ◽  
Vol 773-774 ◽  
pp. 1448-1452
Author(s):  
Adnan Zainorabidin ◽  
Siti Hajar Mansor

This paper shows the stress-strain behavior of peat from the perspective of geotechnical engineering based on laboratory test. Stress happens when a load applied to a certain specimen and deformed the specimen while strain is the response from applied stress on a specimen. Peat is known as an ultimate soft soil in engineering terms because it has low shear strength and compressibility. This research is concerned about the stress-strain behavior of hemic peat. The undisturbed samples were collected at Parit Sulong and Parit Nipah, Batu Pahat, Johore, Malaysia. Normal stresses are 12.5kPa, 25kPa, 50kPa and 100kPa. The shear rate to determine the stress-strain on peat is 0.1mm/min. It is a drained condition test. Both results from each method that obtained were compared based on the relationships of stress-strain. Parit Sulong has higher stress-strain than Parit Nipah. If shear stress increased, shear strain also increased. The result shows that, direct simple shear test of stress-strain that tested on hemic is more relevant than a direct shear box because DSS shear the entire specimen of peat while DSB only shear at the center of the specimen. Geotechnical engineers can use the direct simple shear method to understand efficiently about the stress-strain behaviour of peat.


2013 ◽  
Vol 631-632 ◽  
pp. 782-788
Author(s):  
Cheng Chen ◽  
Zheng Ming Zhou

Soils have nonlinear stiffness and develops irrecoverable strains even at very small strain levels. Accurate modeling of stress-strain behaviour at various strain levels is very important for predicting the deformation of soils. Some existing stress-strain models are reviewed and evaluated firstly. And then a new simple non-linear stress-strain model is proposed. Four undetermined parameters involved in the proposed model can be obtained through maximum Young’s module, deformation module, and limit deviator stress and linearity index of soils that can be measured from experiment directly or calculated by empirical formulas indirectly. The effectiveness of the proposed stress-strain model is examined by predicting stress-strain curves measured in plane-strain compression test on Toyota sand and undrained triaxial compression test on London clay. The fitting results of the proposed model are in good agreement with experimental data, which verify the effectiveness of the model.


2020 ◽  
Vol 44 (5) ◽  
pp. 20190471
Author(s):  
M. Konstadinou ◽  
A. Bezuijen ◽  
G. Greeuw ◽  
C. Zwanenburg ◽  
H. M. Van Essen ◽  
...  

2018 ◽  
Vol 85 (12) ◽  
Author(s):  
Kelin Chen ◽  
Stelios Kyriakides ◽  
Martin Scales

The shear stress–strain response of an aluminum alloy is measured to a shear strain of the order of one using a pure torsion experiment on a thin-walled tube. The material exhibits plastic anisotropy that is established through a separate set of biaxial experiments on the same tube stock. The results are used to calibrate Hill's quadratic anisotropic yield function. It is shown that because in simple shear the material axes rotate during deformation, this anisotropy progressively reduces the material tangent modulus. A parametric study demonstrates that the stress–strain response extracted from a simple shear test can be influenced significantly by the anisotropy parameters. It is thus concluded that the material axes rotation inherent to simple shear tests must be included in the analysis of such experiments when the material exhibits anisotropy.


2008 ◽  
Vol 45 (4) ◽  
pp. 574-587 ◽  
Author(s):  
Scott M. Olson ◽  
Benjamin B. Mattson

A database of 386 laboratory triaxial compression, direct simple shear, rotational shear, and triaxial extension test results was collected to examine yield and liquefied strength ratio concepts used in liquefaction analysis of sloping ground. These data envelope the yield and liquefied strength ratios obtained from back-analyses of liquefaction flow failure case histories. Generally, triaxial compression exhibits the highest yield and liquefied strength ratios, triaxial extension yields the lowest ratios, and direct simple shear – rotational shear shows intermediate responses. However, mode of shear appears to have a considerably smaller effect on laboratory-measured liquefied strength ratios for specimens with a positive state parameter (i.e., difference in consolidation void ratio and steady state void ratio at the same effective stress).


Sign in / Sign up

Export Citation Format

Share Document