anisotropic yield function
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 9)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Elizabeth Mamros ◽  
Jinjin Ha ◽  
Yannis Korkolis ◽  
Brad Kinsey

Abstract In this paper, results for SS316L microtube experiments under combined inflation and axial loading for single and multi-loading segment deformation paths are presented along with a plasticity model to predict the associated stress and strain paths. The microtube inflation/tension machine, utilized for these experiments, creates biaxial stress states by applying axial tension or compression and internal pressure simultaneously. Two types of loading paths are considered in this paper, proportional (where a single loading path with a given axial:hoop stress ratio is followed) and corner (where an initial pure loading segment, i.e., axial or hoop, is followed by a secondary loading segment in the transverse direction, i.e., either hoop or axial, respectively). The experiments are designed to produce the same final strain state under different deformation paths, resulting in different final stress states. This difference in stress state can affect the material properties of the final part, which can be varied for the intended application, e.g., biomedical hardware, while maintaining the desired geometry. The experiments are replicated in a reasonable way by a material model that combines the Hill 1948 anisotropic yield function and the Hockett-Sherby hardening law. Discussion of the grain size effects during microforming impacting the ability to achieve consistent deformation path results is included.


2020 ◽  
Vol 26 (4) ◽  
pp. 401-407
Author(s):  
Rui-bin GOU ◽  
Wen-jiao DAN ◽  
Wei-gang ZHANG ◽  
Min YU

An innovative flow model incorporating the mixture hardening law, anisotropic yield function, and incremental strain formulations was elaborated and applied to DP590 ferrite-martensite dual phase steel. To verify the flow model, both the macro/micro stress-strain responses and the forming patterns of DP590 steel with different martentite contents were simulated during the processes of the cup deep-drawing and the unconstrained cylindrical bending to evaluate the influence of martensite content on the mechanical and forming behavior of the steel. It was found that maternsite content has a significant impact on the macro/micromechanical and forming behavior of the steel, i.e., the ferrite and steel effective stresses and the effective macro/micro-strain distribution in the cup. Under the unconstrained cylindrical bending, the simulated effective maximum macro/micro-strains were in good agreement with the calculated results from the mixture law-based model. It was concluded that the Buaschinger effect is the main reason for an 8 % error between the simulated and experimental results. The flow model was proved to predict the macro/micro flow and forming behavior of the dual phase steels with a good accuracy.


2020 ◽  
Vol 4 (2) ◽  
pp. 43
Author(s):  
Hideo Tsutamori ◽  
Toshiro Amaishi ◽  
Ray Rizaldi Chorman ◽  
Matthias Eder ◽  
Simon Vitzthum ◽  
...  

To evaluate the prediction accuracy of the anisotropic yield function, we propose an original cruciform hole expansion test. Displacements on two axes were applied to the cruciform specimens with a hole in the center. The thickness strain in the region near the hole was compared to the simulation results. Because this forming test is free of friction and bending, it is an appropriate method to assess the anisotropic yield function without the influences of friction or the Bauschinger effect, or the need to consider the stress-strain curve in high-strain region. Hill1948, YLD2000-2D, and spline yield function which is an improved version of the Vegter model were selected, and 6000 series aluminum alloy sheets (A6116-T4) were used in this study. The parameter identification method of the spline yield function also proposed in this paper using the pseudo plane strain tensile test and optimization software. As a result, the spline yield function has better predictive accuracy than the conventional anisotropic yield functions Hill1948 and YLD2000-2D.


2019 ◽  
Vol 87 (3) ◽  
Author(s):  
Brian Nyvang Legarth ◽  
Viggo Tvergaard

Abstract Full three-dimensional cell models containing a small cavity are used to study the effect of plastic anisotropy on cavitation instabilities. Predictions for the Barlat-91 model (Barlat et al., 1991, “A Six-Component Yield Function for Anisotropic Materials,” Int. J. Plast. 7, 693–712), with a non-quadratic anisotropic yield function, are compared with previous results for the classical anisotropic Hill-48 quadratic yield function (Hill, 1948, “A Theory of the Yielding and Plastic Flow of a Anisotropic Metals,” Proc. R. Soc. Lond. A193, 281–297). The critical stress, at which the stored elastic energy will drive the cavity growth, is strongly affected by the anisotropy as compared with isotropic plasticity, but does not show much difference between the two models of anisotropy. While a cavity tends to remain nearly spherical during a cavitation instability in isotropic plasticity, the cavity shapes in an anisotropic material develop toward near-spheroidal elongated shapes, which differ for different values of the coefficients defining the anisotropy. The shapes found for the Barlat-91 model, with a non-quadratic anisotropic yield function, differ noticeably from the shapes found for the quadratic Hill-48 yield function. Computations are included for a high value of the exponent in the Barlat-91 model, where this model represents a Tresca-like yield surface with rounded corners.


Sign in / Sign up

Export Citation Format

Share Document