natural sand
Recently Published Documents


TOTAL DOCUMENTS

545
(FIVE YEARS 255)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
Vol 11 (1) ◽  
pp. 20-28
Author(s):  
Grzegorz Łój ◽  
Wiesława Nocuń-Wczelik

The aim of current study was to determine the recycled concrete aggregate (RCA) applicability in the production of concrete mixture for vibropressed concrete blocks. The experiments were focused especially on the crushed waste material from the same concrete elements producing plant.  For this type of precast elements only some finer fractions can be implemented and the “earth-moist” consistency of fresh mixture is required. The series of samples was prepared in which the mixture of natural aggregates was partially or totally substituted by recycled concrete aggregate. The 0/4 RCA fraction, which is usually rejected in ready mix concrete technology, plays a role of 0/2 sand.  The substitution of sand fraction was from 20% to 100% respectively. The substitution of the coarser aggregate fractions by 4/16 RCA was also done. The standard properties of vibropressed elements, such as the degree of densification, the density of material, the compressive and splitting tensile strength and the water absorption capacity according to the relevant standards were determined. The parameters of materials with the natural aggregate substitution by RCA are affected by the ratio of recycled concrete aggregate. In most cases the results do not decline specially from those for reference samples, when only the natural sand (0/2) fraction is substituted by the 0/4 recycled aggregate. As one could expect, as lower the substitution, as better the test results. The partial substitution of natural aggregate by coarser fractions requires experimental verification; over 20% substitution of natural aggregate by 4/8, 8/16 or 0/16 RCA should be excluded.


Author(s):  
Kiran M.Mane ◽  
◽  
S.P. Chavan ◽  
S.A. Salokhe ◽  
P.A. Nadgouda ◽  
...  

Large amounts of natural fine aggregate (NFA) and cement are used in building, which has major environmental consequences. This view of industrial waste can be used in part as an alternative to cement and part of the sand produced by the crusher as fine aggregate, similar to slag sand (GGBFS), fly ash, metacaolin, and silica fume. Many times, there are issues with the fresh characteristics of concrete when using alternative materials. The ANN tool is used in this paper to develop a Matlab software model that collapses concrete made with pozzolanic material and partially replaces natural fine aggregate (NFA) with manufactured sand (MS). Predict. The slump test was carried out in reference with I.S11991959, and the findings were used to create the artificial neural network (ANN) model. To mimic the formation, a total of 131 outcome values are employed, with 20% being used for model testing and 80% being used for model training. 25 enter the material properties to determine the concrete slump achieved by partially substituting pozzolan for cement and artificial sand (MS) for natural fine aggregate (NFA). According to studies, the workability of concrete is critically harmed as the amount of artificial sand replacing natural sand grows. The ANN model's results are extremely accurate, and they can forecast the slump of concrete prepared by partly substituting natural fine aggregate (NFA) and artificial sand (MS) with pozzolan.


2022 ◽  
Vol 9 ◽  
Author(s):  
Bhupendra Pratap Singh ◽  
Gaber E. Eldesoky ◽  
Pramod Kumar ◽  
Prakash Chandra ◽  
Md Ataul Islam ◽  
...  

Novel Coronavirus disease (COVID-19), after being identified in late December 2019 in Wuhan city of China, spread very fast and has affected all the countries in the world. The impact of lockdowns on particulate matter during the lockdown period needs attention to explore the correlation between anthropogenic and natural emissions. The current study has demonstrated the changes in fine particulate matter PM2.5, PM10 and their effect on air quality during the lockdown. The air quality before the lockdown was low in New Delhi (India) and Riyadh (Saudi Arabia), among major cities worldwide. The air quality of India is influenced by dust and sand from the desert and surrounding areas. Thus, the current study becomes important to analyse changes in the air quality of the Indian sub-continent as impacted by dust storms from long distances. The result indicated a significant reduction of PM2.5 and PM10 from 93.24 to 37.89 μg/m3 and from 176.55 to 98.87 μg/m3 during the lockdown period as compared to pre lockdown period, respectively. The study shows that average concentrations of PM10 and PM2.5 have declined by -44% and -59% during the lockdown period in Delhi. The average value of median PM10 was calculated at 33.71 μg/m3 for Riyadh, which was lower than that value for New Delhi during the same period. The values of PM10 were different for pre and during the lockdown periods in Riyadh, indicating the considerable influence on air quality, especially the concentration of PM10, from both the natural (sand and dust storms) and the anthropogenic sources during the lockdown periods. However, relatively smaller gains in the improvement of air quality in Riyadh were correlated to the imposition of milder lockdown and the predominance of natural factors over the anthropogenic factors there. The Air Quality Index (AQI) data for Delhi showed the air quality to be ‘satisfactory’ and in the green category during the lockdown period. This study attempts to better understand the impact of particulate matter on the short- and long-term air quality in Delhi during the lockdown. This study has the scope of being scaled up nationwide, and this might be helpful in formulation air pollution reduction and sustainable management policies in the future.


Author(s):  
Qi Sun ◽  
Botao Li ◽  
Hui Wang ◽  
Yiting Wang

Abstract To study the durability of tailings and waste rock aggregate geopolymer concrete (TWGPC), a large number of tailings and waste rock were used to replace natural sand and stone as aggregates, and a fly ash geopolymer was used to replace cement as cementing material to prepare TWGPC. The slow freezing method was used to carry out single freeze-thaw and freeze-thaw corrosion tests. Scanning electron microscopy and energy dispersive spectroscopy (SEM–EDS) were used to analyse the microstructure and reaction products of TWGPC. The degradation mechanism of TWGPC was studied, and the life of TWGPC was predicted. The results show that the higher the concentration of corrosion solution was, the more significant the change trend of the mechanical properties test results. In the early stage of the cycle, acinar gypsum and short columnar ettringite were generated to fill the pores and improve the compactness and frost resistance of TWGPC. In the late stage of the cycle: calcium-silicate-hydrate (C-S-H) was decomposed and gradually replaced by magnesium-silicate-hydrate (M-S-H). The cohesion between mortar and aggregate was reduced, and a large number of products were generated. Cl- inhibited the transmission rate of SO42- and reduced the erosion effect of SO42- on TWGPC. The single freezing-thawing life prediction model had high accuracy, and the life prediction conclusion based on reliability was consistent with the appearance damage analysis, mechanical property testing and microscopic morphology analysis.


Author(s):  
Giuliana Scuderi

The construction industry is the largest global consumer of materials, among which sand plays a fundamental role; now the second most used natural resource behind water, sand is the primary component in concrete. However, natural sand production is a slow process and sand is now consumed at a faster pace than it’s replenished. One way to reduce consumption of sand is to use alternative materials in the concrete industry. This paper reports the exploratory study on the suitability of aquaculture byproducts as fine aggregates in concrete mixtures. Seashell grit, seashell flour and oyster flour were used as sand replacements in concrete mixtures (10%, 30% and 50% substitution rates). All the mixtures were characterized in fresh and hardened states (workability, air content, compressive strength and water absorption). Based on compressive strength, measured at 7 and 28 days, seashell grit provided the most promising results: the compressive strength was found to be larger than for conventional concrete. Moreover, the compressive strength of the cubes was larger, when larger percentages of seashell grit were used, with the highest value obtained for 50% substitution. However, for oyster flour and seashell flour, only 10% sand substitution provided results comparable with the control mixture. For the three aggregates, workability of concrete decreases with fineness modulus decrease. For mixtures in which shell and oyster flour were used with 30% and 50% substitution percentages, it was necessary to increase the quantity of mixing water to allow a minimal workability. In conclusion, considering the promising results of the seashell grit, it is suggested to study further the characteristic of the material, also considering its environmental and physical properties, including acoustic and thermal performances. Higher substitution percentages should also be investigated. This research adds to the relevant literature in matter of biobased concrete, aiming at finding new biobased sustainable alternatives in the concrete industry.


Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Kechang Dai ◽  
Weixing Liu ◽  
Xiaotian Shui ◽  
Dafang Fu ◽  
Chris Zevenbergen ◽  
...  

Permeable pavements can infiltrate and reduce stormwater runoff in parking lots, but issues around long construction periods and proper maintenance still required proper research and further understanding. The application of precast concrete can help to solve this. In this study, precast concrete components were applied to the design of permeable pavements to form prefabricated permeable pavements. The laboratory study is one of the first to examine the hydrological effect of prefabricated pervious pavements in parking lots. Four kinds of permeable pavements were designed and manufactured. These had different materials (natural sand-gravel, medium sand) which comprised the leveling layer or different assembly forms of precast concrete at the base. Three scenarios of rainfall intensity (0.5, 1, and 2 mm/min) and three rainfall intervals (one, three, and seven days) were simulated using rainfall simulators. The initial runoff time, runoff coefficient, and runoff control rate of each permeable pavement were investigated during the process of simulating. Results showed that the initial runoff time was no earlier than 42 min, the maximum runoff coefficient was 0.52, and the minimum runoff control rate was 47.7% within the rainfall intensity of 2 mm/min. The initial runoff time of each permeable pavement was no earlier than 36 min when the rainfall interval was one day, whereas, the maximum runoff coefficient was 0.64, and the average runoff control rate was 41.5%. The leveling layer material had a greater impact on the hydrological effect of permeable pavements, while the assembly form of precast concrete had no significant effect. Compared with natural sand-gravel, when the leveling layer was medium sand, the runoff generation was advanced by 4.5–7.8 min under different rainfall intensities, and 7–10 min under different rainfall intervals. The maximum runoff coefficient increased with about 14.6% when the rainfall interval was one day. Among four kinds of permeable pavements, the type I permeable pavement had the best runoff regulation performance. The results revealed that all prefabricated permeable pavements used in this study had good runoff control performance, and this design idea proved to be an alternative for the future design of permeable pavements.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 100
Author(s):  
Szymon Skibicki ◽  
Patrycja Jakubowska ◽  
Maria Kaszyńska ◽  
Daniel Sibera ◽  
Krzysztof Cendrowski ◽  
...  

This study determines the effect of spent garnet as a replacement for natural sand in 3D-printed mortar at early ages. Five mixes with different spent garnet amounts were prepared (0%, 25%, 50%, 75% and 100% by volume). The ratio of binder to aggregate remained unchanged. In all mixes the water/binder ratio was assumed as a constant value of 0.375. Tests were performed to confirm the printability of the mix (a path quality test using a gantry robot with an extruder). Determinations of key buildability properties of the mix (green strength and Young’s Modulus) during uniaxial compressive strength at 15 min, 30 min and 45 min after adding water were conducted. A hydraulic press and the GOM ARAMIS precision image analysis system were used to conduct the study. The results showed that an increase in spent garnet content caused a decrease in green strength and Young’s Modulus (up to 69.91% and 80.37%, respectively). It was found that to maintain proper buildability, the recommended maximum replacement rate of natural sand with garnet is 50%. This research contributes new knowledge in terms of using recycled waste in the 3D printing technology of cementitious materials.


2021 ◽  
Vol 13 (24) ◽  
pp. 13828
Author(s):  
Yu Wang ◽  
Roaa H. Latief ◽  
Hasan Al-Mosawe ◽  
Hussein K. Mohammad ◽  
Amjad Albayati ◽  
...  

Recently, interest in the use of projectiles in research on recycling waste materials for construction applications has grown. Using recycled materials for the construction of asphalt concrete pavement, in the meantime, has become a topic of research due to its significant benefits, such as cost savings and reduced environmental impacts. This study reports on comprehensive experimental research conducted using a typical mechanical milling waste, iron filing waste (IFW), as an alternative fine aggregate for warm mix asphalt (WMA) for pavement wearing surface applications. A type of IFW from a local machine workshop was used to replace the conventional fine aggregate, fine natural sand (FNS), at percentages of 25%, 50% 75%, and 100% by the weight of FNS of the size passing sieve No. 50. Experimental tests were conducted on the mixes to compare their Marshall properties, resilient moduli, rutting and fatigue resistance, and moisture susceptibility. Finally, a performance analysis was carried out using the VESYS 5W software on the constructed pavement using the IFW mixes. Both the experiment and the modeling work demonstrated that IFW can be an effective alternative resource for replacing natural fine aggregate in WMA concrete and provided details on the optimum rate based on the comprehensive data obtained first hand.


This paper consists of the results of an experimental research on the effect of bottom ash as partial replacement of natural sand on the properties of cement mortar. The experimental works were carried out by replacement of fine aggregate with varying percentages of bottom ash i.e. 15%, 20%, 25% and 30%. As the microstructure of mortar matrix changes with varying water cement ratio, the w/c was kept constant i.e. 0.45.Mortar cubes of 70.6mm×70.6mm×70.6mm were casted and vibrated on an electrically operated vibrator. Then various tests including compressive strength, water permeable porosity (apparent porosity), percentage of water absorption, sorptivity were performed on mortar cubes replaced with bottom ash. The results were compared with the results of control mix and all the tests were performed at 3, 7, 28, 56 and 90 days. Based on the results, it is concluded that fine aggregates can be replaced up to 20% with bottom ash in cement mortar.


2021 ◽  
pp. 103817
Author(s):  
A. Benahsina ◽  
Y. El Haloui ◽  
Y. Taha ◽  
M. Elomari ◽  
M. Abdouh Bennouna

Sign in / Sign up

Export Citation Format

Share Document