soft soil
Recently Published Documents


TOTAL DOCUMENTS

2219
(FIVE YEARS 810)

H-INDEX

41
(FIVE YEARS 7)

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 307
Author(s):  
Zhengdong Luo ◽  
Biao Luo ◽  
Yufei Zhao ◽  
Xinyu Li ◽  
Yonghua Su ◽  
...  

To solve the issues of insufficient early strength of cement stabilized soil and high resource cost, high reduction cost, and high environmental cost induced by the application of cement, the slag and fly ash-based geopolymer was adopted as the stabilizer to treat riverside soft soil. This study mainly investigated the effects of stabilizer content, slag-to-fly ash ratio, and alkaline activator content on the strength of geopolymer stabilized soils with different curing ages. Unconfined compressive strength (UCS), scanning electron microscope (SEM), and X-ray energy spectrum analysis (EDS) tests were carried out. The results show that the stabilizer content, slag–fly ash ratio, and alkaline activator content have a decisive influence on the UCS of geopolymer-stabilized soil. The mix-proportions scheme of geopolymer stabilized riverside soft soil, with a geopolymer content of 15%, a slag–fly ash ratio of 80:20, and an alkaline activator content of 30%, is considered optimum. It is proven by SEM that the uniformly distributed gelatinous products formed in the geopolymer-stabilized soil bind the soil particles tightly. Moreover, the EDS analysis confirms that the gelatinous products are mainly composed of C-S-H gel and sodium-based aluminosilicate (N-A-S-H).


2022 ◽  
Vol 07 (01) ◽  
Author(s):  
Serpil Erden ◽  

In this study, the performances of the sand piles in Istanbul's Bağcılar and Zeytinburnu districts has been analyzed using Finite Element Method (FEM). Single and group (triple) piles with various length/diameter ratios (L/D) were placed in the water-saturated soft clay soil. Sand piles were modeled in various L/D ratios (10, 5.71, and 8.57). The distance between the piles was chosen as 2 meters and the group effect was also investigated. A uniformly distributed load of 162 kN/m2 is placed on the ground. In addition, the soil was modeled with the Soft-Soil soil model, the hardening soil model for the infill part, and the sand piles with the Mohr-Coulomb soil model. According to the results , the settlement of the soil decreases by 52.8% for a single pile with an L/D ratio of 8.57. However, the best L/D ratio for triple piles was found to be 5.71. In this case, the settlement decreases by 52.8% compared to the pileless situation. Finally it was concluded that the model with the L/D ratio of 8.57 reduced settlement in the best and the most efficient way.


Author(s):  
Sudip Basack ◽  
Gautam Das ◽  
SK Asif Iqbal ◽  
Jyotirmoy Deb

Civil Infrastructure built on soft and compressible soil is likely to collapse due to undrained shear failure or unacceptable settlement of supporting foundations. Incorporation of adequate ground improvement technique with the aim of upgrading the strength and stiffness of the weak soil is essential in such cases. Amongst various established methods adopted worldwide for improving soft ground, using perforated piles is a relatively emerging technique. Such piles not only transmit the structural load into the subsoil beneath in a manner similar to the conventional piles, but also assist in radial consolidation of soft soil due to perforated side walls. This paper presents a brief overview on the investigations carried out on this new technique. Also, a typical case study has been presented. As observed, the axial pile capacity progressively increased while settlement reduction took place, with accelerated radial consolidation.


2022 ◽  
Vol 961 (1) ◽  
pp. 012057
Author(s):  
BA Al-Dawoodi ◽  
MQ Waheed ◽  
FH Rahil

Abstract This study discusses the results of simulation a finite element analysis of the load-settlement curve using soft soil model of shallow foundation subjected to axial load rested on three different types of clayey soils, it was considered different shear strength parameters (C=16, C=25, and C=70). It was concluded for clayey soil of C=16, there was a match to the experimental load – settlement curve using the soft soil model. It was also observed increase in the foundation width led to an increase in bearing capacity, however, bearing capacity increased by around (79 %) for an increase in footing width of (6.25), so it was about (144%) for (12.5).


2022 ◽  
Vol 2148 (1) ◽  
pp. 012031
Author(s):  
Jinfang Hou ◽  
Jian Yu

Abstract The foundation of the immersed tube transition section of the Hong Kong-Zhu Hai-Macao Bridge Project is distributed with thick silty soil. The method of sand compaction pile + surcharge preloading is used to treat the soft soil ground. In order to determine the foundation consolidation settlement and subsequent residual settlement in the transition section of the immersed tube tunnel, a monitoring system using long wires combined with wireless transmission and long-distance data collection was developed to obtain the measured foundation settlements during the surcharge period. After comparing the measured value with the calculated value, the formula for the composite foundation of the sand compaction pile was revised to obtain a more reasonable residual settlement of the foundation, which could guide the design and construction of the immersed tube tunnel.


2022 ◽  
Vol 961 (1) ◽  
pp. 012052
Author(s):  
Sura Tawfeeq Al-Auqbi ◽  
Nahla M. Salim ◽  
Mahmood R. Mahmood

Abstract The stone column technique is an effective method to increase the strength of soft cohesive soil, which results in a reduction in foundation settlement and an increase in bearing capacity. The topic of restraining creep settlement through the use of stone columns techniques has gained increasing attention and consideration; because stone columns are widely used to treat soft soil deposits, caution should be applied in estimating creep settlement. We discovered a reversible relation between shear parameters and the creep settlement in floating stone columns; while, in case of end-bearing stone columns shows a direct positive relation between shear parameters and the creep settlement, and the creep settlement began at the primary settlement. The shear parameters affected the improvement factor (n) of creep settlement in both floating and end-bearing stone columns. The standard creep coefficient’s n values in floating and end-bearing conditions were more significant than the low creep coefficient’s n values in forwarded geometric conditions. The stress in both floating and end-bearing stone columns was increasing and uniformly distributed along the length of the floating stone column and in the case of end-bearing stone column was limited to the stiffness layer; the maximum vertical stress was in the central point of the embankment. The embankment’s maximum horizontal displacement occurred on the edge.


2022 ◽  
Vol 2148 (1) ◽  
pp. 012030
Author(s):  
Xiaomin Liu ◽  
Liwei Song ◽  
Songbao Cai ◽  
Xin Zhao ◽  
Peng Xie

Abstract The Ou River estuary deposits deep soft silt and silt clay, the pipe-jacking tunnel departures from Qidu island, then passes underneath north levee road, viewing platform, Ou River and Ou River road, finally reaches the received well. The net distance between tunnel segment and the viewing platform piles is only 230mm. In order to analyze the negative influence of large diameter pipe-jacking tunnel traversing piles of viewing platform, the numerical model is established, and the levee road settlement value is found which matches with observed settlement very well. The dynamic analysis is also conducted by EI Centro seismic wave, and the result reveals that the max displacement occurs on the segment between the rear row piles of viewing platform, and the max displacement reaches 68.6mm in the earthquake.


Sign in / Sign up

Export Citation Format

Share Document