THE PROTON RESONANCE SPECTRA OF SOME SUBSTITUTED FURANS AND PYRROLES

1961 ◽  
Vol 39 (4) ◽  
pp. 905-914 ◽  
Author(s):  
R. J. Abraham ◽  
H. J. Bernstein

The proton magnetic resonance spectra of some substituted furans and pyrroles have been analyzed for spin coupling constants and chemical shifts.The relative insensitivity of the spin coupling constants to the nature of the substituent makes it possible to estimate their values in the parent molecules furan and pyrrole. The magnitude of the spin coupling constants is correlated with the angles made by the CH bonds with the CC bonds of the ring.The chemical shifts are interpreted in terms of an effect due to the electronegativity of the substituent together with the effect due to conjugation with the ring.

1957 ◽  
Vol 35 (12) ◽  
pp. 1487-1495 ◽  
Author(s):  
W. G. Schneider ◽  
H. J. Bernstein ◽  
J. A. Pople

The proton resonance spectra of pyridine, 2,6-pyridine-d2, 3-pyridine-d1, and 4-pyridine-d1 have been obtained for the pure liquids under conditions of high resolution. The spectra have been analyzed as proton groupings of AB2X2, AB2, perturbed ABX, and B2X2 respectively. The spin-coupling constants obtained from analysis of the simpler spectra of the deuterated molecules were used to suggest trial solutions for the analysis of the complicated AB2X2 spectrum of pyridine. A final set of chemical shifts and spin-coupling constants derived for pyridine give satisfactory agreement between the observed and calculated spectrum.


1968 ◽  
Vol 21 (7) ◽  
pp. 1853 ◽  
Author(s):  
B Caddy ◽  
M Martin-Smith ◽  
RK Norris ◽  
ST Reid ◽  
S Sternhell

N.m.r. data for 19 5-substituted and 13 polysubstituted benzo[b]thiophens are tabulated. The influence of the substituents at C5 on the chemical shifts of H4 and H6 is discussed. Long-range interproton spin-spin coupling between H3 and H7, and between H2 and H6, is general in benzo[b]thiophens. The vicinal coupling J6,7 in 5-substituted benzo[b]thiophens varies directly and linearly with the electronegativity of the substituents at C5.


1965 ◽  
Vol 20 (10) ◽  
pp. 948-956 ◽  
Author(s):  
Harald Günther

The proton magnetic resonance spectra of 1.6-methano- and 1.6-oxido-cyclodecapentaene are described and analyzed in terms of chemical shifts and coupling constants. The results are discussed in connection with the structure and possible aromatic character of these compounds. Measurements of the concentration dependence of the chloroform resonance signal in solutions of both compounds give additional support for the presence of a delocalized 10 π-electron system.


1977 ◽  
Vol 55 (3) ◽  
pp. 557-561 ◽  
Author(s):  
William J. E. Parr ◽  
Ted Schaefer

The long-range spin–spin coupling constants between protons bonded to silicon and ring protons in C6H5SiH3, C6H5SiH2Cl, C6H5SiH2CH3, C6H5SiHCl2, and C6H5SiH(CH3)2 are determined from the proton magnetic resonance spectra of benzene solutions. A hindered rotor treatment of the barrier to internal rotation about the C—Si bond, in conjunction with the coupling constants over six bonds, allows the deduction of the low-energy conformations for C6H5SiH(CH3)2 and for C6H5SiHCl2, as well as of barriers of 1.0 ± 0.2 kcal/mol. The approach becomes less reliable for C6H5SiH2CH3 and for C6H5SiH2Cl and, particularly for the latter compound, the derived barrier is very likely an upper limit only. Ab initio molecular orbital calculations of the conformational energies are reported for C6H5SiH3, C6H5SiH2Cl, and for C6H5SiHCl2.


1961 ◽  
Vol 39 (12) ◽  
pp. 2536-2542 ◽  
Author(s):  
J. B. Hyne

Nuclear magnetic resonance spectral results including chemical shifts, anisotropy effects, spin coupling constants, and hydrogen bonding phenomena are presented for the diastereoisomeric pair of α–β amino alcohols (−)-ephedrine and (+)-Ψ-ephedrine. The results are shown to be in keeping with the existence of a preferred residence conformation for each of the diastereoisomers.


1965 ◽  
Vol 18 (5) ◽  
pp. 707 ◽  
Author(s):  
PJ Black ◽  
ML Heffernan

The proton magnetic resonance spectra of the four isomeric diazanaphthalenes, quinoxaline, phthalazine, quinazoline, and cinnoline, all as dilute solutions in carbon tetrachloride and acetone, have been investigated at 100 Mc/s. The chemical shifts and coupling constants have been obtained by direct calculation or, where appropriate, by an iterative procedure. Long-range coupling constants between protons separated by five and six bonds have been observed.


Sign in / Sign up

Export Citation Format

Share Document