Kinetics of Proton Transfer Reactions of Carbon Acids. IV. Primary Deuterium Isotope Effect in the Reaction of Di-(4-nitrophenyl)methane-d2 with t-Butoxide

1974 ◽  
Vol 52 (4) ◽  
pp. 592-596 ◽  
Author(s):  
Jae-Hang Kim ◽  
Kenneth T. Leffek

The primary deuterium isotope effect has been measured for the proton transfer reaction from di-(4-nitrophenyl)methane to t-butoxide ion in a solvent consisting of 10% v/v toluene in t-butanol at a series of temperatures between 20 and 45 °C. The isotopic rate ratio, kH/kD, is 7.3 at 25 °C. The activation parameters showed an enthalpy of activation difference (ΔHD≠ − ΔHH≠) of only ca. [Formula: see text] kcal mol−1 and an entropy isotope effect (ΔSD≠ − ΔSH≠) of −2.4 cal mol−1 deg−1. The latter indicates, according to the theory of Bell, that tunnelling of the proton through the energy barrier is unimportant in this reaction. This result is compared to other reactions in the literature, in which tunnelling has been postulated to occur.

1972 ◽  
Vol 50 (1) ◽  
pp. 24-30 ◽  
Author(s):  
A. Jarczewski ◽  
K. T. Leffek

The second-order rate constants have been measured over a range of temperatures for the proton-transter reactions from di-(4-nitrophenyl)methane to ethoxide, isopropoxide, and t-butoxide ions in solvents consisting of the corresponding alcohols containing 10% toluene by volume. The activation parameters ΔH≠ and ΔS≠ have been calculated and an interpretation of them is given in terms of solvation effects during the activation process. A comparison between the activation parameters for proton transfers and E2 olefin-forming β-elimination reactions is made and discussed with respect to transition state character of the latter reactions.


1975 ◽  
Vol 53 (8) ◽  
pp. 1176-1180 ◽  
Author(s):  
Arnold Jarczewski ◽  
Przemyslaw Pruszynski ◽  
Kenneth T. Leffek

The second-order rate constants, activation parameters, and primary deuterium isotope effects are reported for the proton transfer reaction from di-(4-nitrophenyl)methane to t-butoxide ion in a series of solvents containing varying amounts of toluene in t-butyl alcohol. Increasing toluene content in the solvent decreases the rate constant and increases the enthalpy of activation, while the entropy of activation becomes less negative. The isotope rate ratio kH/kD increases from 7.3 in 10% v/v toluene to 9.4 in 50% v/v toluene at 25 °C, corresponding to a change in (ΔHD≠ − ΔHH≠) from 0.46 to 1.0 kcal mol−1 and a change in (ΔSD≠ − ΔSH≠) from −2.4 to −1.1 cal mol−1 deg−1. It is suggested that the negative values for (ΔSD≠ − ΔSH≠) are due to a time lag for solvent reorganization relative to the proton transfer.


1979 ◽  
Vol 57 (6) ◽  
pp. 669-672 ◽  
Author(s):  
Arnold Jarczewski ◽  
Przemyslaw Pruszynski ◽  
Kenneth T. Leffek

The proton transfer reaction between 2,4,6-trinitrotoluene and 1,1′,3,3′-tetramethylguanidine in dimethylformamide solvent shows a large primary deuterium isotope effect, kH/kD = 24.3 at 0 °C and 16.9 at 20 °C. The enthalpy of activation difference (ΔHD≠ − ΔHH≠) = 2.6 ± 0.4 kcal mol−1 and the entropy of activation difference (ΔSD≠ − ΔSH≠) = 3.4 ± 1.3 cal mol−1 K−1. This isotope effect, when fitted to Bell's equation, indicates that there is a considerable contribution to this reaction from tunnelling of the proton through the potential energy barrier.


1990 ◽  
Vol 68 (12) ◽  
pp. 2242-2248 ◽  
Author(s):  
Wlodzimierz Galezowski ◽  
Arnold Jarczewski

The kinetics of the reaction of[Formula: see text](R = Me, Et, i-Pr; NPNE, NPNP, MNPNP respectively; L is H or D) with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) base in tetrahydrofuran (THF) and chlorobenzene (CB) solvents are reported. The products of these proton transfer reactions are ion pairs absorbing at λmax = 460–480 nm. The equilibrium constants in THF were [Formula: see text]and in CB [Formula: see text]for NPNE, NPNP, MNPNP respectively. The thermodynamic parameters of the reactions are also quoted. The substrate reacts with DBU in both THF and CB solvents in a normal second-order proton transfer reaction. In the case of deuteron transfer, isotopic D/H exchange is much faster than internal return. The reactions show low values of enthalpy of activation ΔH* = 14.3, 18.1, 24.2 and 13.0, 15.1, 18.6 kJmol−1 for NPNE, NPNP, and MNPNP in THF and CB respectively, and large negative entropies of activation −ΔS* = 141, 139, 146; 140, 146, 160 J mol−1 deg−1 for the same sequence of substrates and solvents. The kinetic isotope effects are large, (kH/kD)20°c = 12.2, 13.0, 10.1; 12.9, 12.0, 10.2 for the above sequence of substrates and solvents, and show no difference with changes in either steric hindrance of the C-acids or polarity of the solvents. Keywords: proton transfer, kinetic isotope effect.


1988 ◽  
Vol 66 (6) ◽  
pp. 1454-1458 ◽  
Author(s):  
Kenneth T. Leffek ◽  
Przemyslaw Pruszynski

Equilibrium constants, rate constants, primary deuterium isotope effects, and activation parameters have been measured for the proton transfer reactions in acetonitrile solvent of 4-nitrophenylphenylcyanomethane and 2-methyl-4-nitrophenylphenyl-cyanomethane with tetramethylguanidine base and for the reactions of 2-methyl-4-nitrophenylphenylcyanomethane and 2,6-di-methyl-4-nitrophenylphenylcyanomethane with 1,5-diazabicyclo[5.4.0]undec-7-ene base. Introduction of the ortho-methyl groups in the substrate molecule caused significant reductions in the equilibrium and rate constants. The expected rise in the kinetic primary deuterium isotope effect was not observed when the first ortho-methyl group was introduced, but a 20% increase did accompany the introduction of the second ortho-methyl group. Enthalpy of activation measurements indicated that there was no increase in the proton tunnelling contribution to the isotope effect when the amount of steric hindrance is increased with ortho-methyl groups.


1973 ◽  
Vol 51 (17) ◽  
pp. 2805-2809 ◽  
Author(s):  
Jae-Hang Kim ◽  
Kenneth T. Leffek

The equilibrium constants, the second-order rate constants, and the activation parameters have been determined for the proton transfer from di-(4-nitrophenyl)methane to ethoxide ion in a series of mixed solvents containing various amounts of acetonitrile in ethanol. The quantities have been interpreted in terms of the general postulates of the Miller–Parker theory of solvation effects.


Sign in / Sign up

Export Citation Format

Share Document