proton transfers
Recently Published Documents


TOTAL DOCUMENTS

325
(FIVE YEARS 38)

H-INDEX

43
(FIVE YEARS 2)

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6894
Author(s):  
Natalia L. Zaichenko ◽  
Tatyana M. Valova ◽  
Olga V. Venidiktova ◽  
Alexander V. Lyubimov ◽  
Andrey I. Shienok ◽  
...  

Spectral-luminescence properties of a hybrid compound containing a coumarin-type spiropyran and an azomethinocoumarin fragment in toluene-acetonitrile solution in the presence of Li+, Ca2+, Zn2+ and Mg2+ ions are reported. Two excited state proton transfers can occur in the hybrid compound—the transfer of a proton from the OH group of the 7-hydroxy coumarin tautomer to the N atom of the C=N bond of the azomethine fragment leading to green ESIPT fluorescence with a maximum at 540 nm and from the OH group of the 7-hydroxy coumarin tautomer to the carbonyl group of the pyrone chromophore, which leads to the formation of the 2-hydroxyl-tautomer T of coumarin with blue fluorescence with a maximum at 475 nm. Dependence of these excited state proton transfers on the metal nature and irradiation with an external UV source is discussed.


2021 ◽  
Author(s):  
Terry Z. H. Gani ◽  
Zachariah J. Berkson ◽  
Ran Zhu ◽  
Jong Hun Kang ◽  
John R. Di Iorio ◽  
...  

Olefin metathesis is a versatile strategy for large-scale olefin interconversion, yet mechanistic details over industrial heterogeneous catalysts have remained ambiguous for decades. Here, from rigorous kinetic measurements, spectroscopic studies, and computational modeling of propylene metathesis over model and industrial WOx/SiO2 catalysts, we identify a hitherto unknown site renewal and decay cycle, mediated by proton transfers involving proximal Brønsted acidic OH groups, which operates concurrently with the classical Chauvin cycle. We show how this cycle can be manipulated using small quantities of promoter olefins to drastically increase steady-state propylene metathesis rates by up to 30-fold at 250oC with negligible promoter consumption. The increase in activity and considerable reduction of operating temperature requirements were also observed on MoOx/SiO2 catalysts, showing that this strategy is general and can address major roadblocks associated with industrial metathesis processes.


ChemPhysChem ◽  
2021 ◽  
Author(s):  
Jean-Marc Latour ◽  
Patrick Dubourdeaux ◽  
Geneviève Blondin

2021 ◽  
Author(s):  
Pu Qian ◽  
David JK Swainsbury ◽  
Tristan Ian Croll ◽  
Jack H Salisbury ◽  
Elizabeth C Martin ◽  
...  

Reaction centre light-harvesting 1 (RC-LH1) complexes are the essential components of bacterial photosynthesis. The membrane-intrinsic LH1 complex absorbs light and the energy migrates to an enclosed RC where a succession of electron and proton transfers conserves the energy as a quinol, which is exported to the cytochrome bc1 complex. In some RC-LH1 variants quinols can diffuse through small pores in a fully circular, 16-subunit LH1 ring, while in others missing LH1 subunits create a gap for quinol export. We used cryogenic electron microscopy to obtain a 2.5 Å resolution structure of one such RC-LH1, a monomeric complex from Rhodobacter sphaeroides. The structure shows that the RC is partly enclosed by a 14-subunit LH1 ring in which each αβ heterodimer binds two bacteriochlorophylls and, unusually for currently reported complexes, two carotenoids rather than one. Although the extra carotenoids confer an advantage in terms of photoprotection and light harvesting, they could block small pores in the LH1 ring and impede passage of quinones, necessitating a mechanism to create a dedicated quinone channel. The structure shows that two transmembrane proteins play a part in stabilizing an open ring structure; one of these components, the PufX polypeptide, is augmented by a hitherto undescribed protein subunit we designate as protein-Y, which lies against the transmembrane regions of the thirteenth and fourteenth LH1α polypeptides. Protein-Y prevents LH1 subunits 11-14 adjacent to the RC QB site from bending inwards towards the RC and, with PufX preventing complete encirclement of the RC, this pair of polypeptides ensures unhindered


2021 ◽  
Vol 17 ◽  
pp. 1499-1502
Author(s):  
Louis G Mueller ◽  
Allen Chao ◽  
Embarek AlWedi ◽  
Fraser F Fleming

Substituted imidazoles are readily prepared by condensing the versatile isocyanide Asmic, anisylsulfanylmethylisocyanide, with nitrogenous π-electrophiles. Deprotonating Asmic with lithium hexamethyldisilazide effectively generates a potent nucleophile that efficiently intercepts nitrile and imine electrophiles to afford imidazoles. In situ cyclization to the imidazole is promoted by the conjugate acid, hexamethyldisilazane, which facilitates the requisite series of proton transfers. The rapid formation of imidazoles and the interchange of the anisylsulfanyl for hydrogen with Raney nickel make the method a valuable route to mono- and disubstituted imidazoles.


2021 ◽  
Vol 9 ◽  
Author(s):  
Divya Kaur ◽  
Umesh Khaniya ◽  
Yingying Zhang ◽  
M. R. Gunner

Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton transfer paths. The proton pumps, that move protons uphill from low to high concentration compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload protons and gates, which block backflow of protons. PLS and gates should be synchronized so PLS proton affinity is high when the gate opens to the side with few protons and low when the path is open to the high concentration side. Proton transfer paths in the proteins we describe have different design features. Linear paths are seen with a unique entry and exit and a relatively straight path between them. Alternatively, paths can be complex with a tangle of possible routes. Likewise, PLS can be a single residue that changes protonation state or a cluster of residues with multiple charge and tautomer states.


Sign in / Sign up

Export Citation Format

Share Document