Neutral Solvolysis of Acyl Carbon and the Temperature Dependence of the Kinetic Solvent Isotope Effect

1975 ◽  
Vol 53 (6) ◽  
pp. 869-877 ◽  
Author(s):  
B. Rossall ◽  
R. E. Robertson

The temperature dependence of the rate of hydrolysis of benzoic, phthalic, and succinic anhydrides have been determined in H2O and D2O under "neutral" conditions. Corresponding data have been obtained for methyl trifluoroacetate. While both series supposedly react by the same BAc2 mechanism, remarkable differences are made obvious by this investigation. Possible sources of such differences are proposed.

1969 ◽  
Vol 47 (24) ◽  
pp. 4599-4605 ◽  
Author(s):  
Y. Inomoto ◽  
R. E. Robertson ◽  
G. Sarkis

A study of the rates of hydrolysis of 3-Me-2-butyl bromide and methanesulfonate in water leads to values of ΔCp≠ of −80 and −40 cal deg−1 mole−1, respectively. The product was about 85–95 % t-pentanol, the remainder being olefin. The value of ΔCp≠ for the solvolysis of the methanesulfonate in D2O was −44 cal deg−1 mole−1. The kinetic solvent isotope effect (k.s.i.e.) for the latter was unusually low (k.s.i.e. = 1.047 at 5 °C and 1.025 at 25 °C). Deuteration at C-3 led to a reduction in the rate of hydrolysis by a factor of about 2.25. This is consistent with an activation process involving "hydrogen participation" as previously reported by Winstein and Takahashi for solvolysis of the corresponding tosylate in acetic acid. In contrast to the latter work, the reaction in water appears to be uncomplicated.


1988 ◽  
Vol 254 (3) ◽  
pp. 899-901 ◽  
Author(s):  
T Selwood ◽  
M L Sinnott

1. Michaelis-Menten parameters for the hydrolysis of p-nitrophenyl alpha-L-arabinofuranoside were measured as a function of pL (pH or pD) in both 1H2O and 2H2O. 2. The variation of both Vmax. and Vmax./Km with pL is sigmoid, the pK governing Vmax. shifting from 6.34 +/- 0.05 in 1H2O to 6.84 +/- 0.07 in 2H2O, and that governing Vmax./Km from 5.89 +/- 0.03 in 1H2O to 6.38 +/- 0.05 in 2H2O. 3. In the plateau regions there is a small inverse solvent isotope effect on Vmax./Km (0.92), and one of 1.45 on Vmax. 4. The variation of Vmax. with isotopic composition is strictly linear, indicating that the isotope effect arises from the transfer of a single proton.


1975 ◽  
Vol 53 (20) ◽  
pp. 3106-3115 ◽  
Author(s):  
Ross Elmore Robertson ◽  
Adrianna Annesa ◽  
John Marshall William Scott

The temperature dependence of the rate of hydrolysis of methyl perchlorate has been measured and the entropy (ΔS≠), enthalpy (ΔH≠), and heat capacity (ΔCp≠) of activation calculated. The measurements confirm that the perchlorate ion is superior to all other leaving groups in water. The isotope effect related to the hydrolysis of methyl-d3 perchlorate has been measured at three temperatures and shown to be inverse. The thermodynamic parameters and the isotope effect were examined with respect to the mechanism of substitution at a primary carbon atom.


1999 ◽  
Vol 77 (5-6) ◽  
pp. 997-1004 ◽  
Author(s):  
X L Armesto ◽  
M Canle L. ◽  
V García ◽  
J A Santaballa

A kinetic study of the mechanism of oxidation of Ala-Gly and Pro-Gly by aqueous chlorine has been carried out. Among other experimental facts, the deuterium solvent isotope effects were used to clarify the mechanisms involved. In a first stage, N-chlorination takes place, and then the (N-Cl)-dipeptide decomposes through two possible mechanisms, depending on the acidity of the medium. The initial chlorination step shows a small isotope effect. In alkaline medium, two consecutive processes take place: first, the general base-catalyzed formation of an azomethine (β ca. 0.27), which has an inverse deuterium solvent isotope effect (kOH-/kOD- ~ 0.8). In a second step, the hydrolysis of the azomethine intermediate takes place, which is also general base-catalyzed, without deuterium solvent isotope effect, the corresponding uncatalyzed process having a normal deuterium solvent isotope effect (kH2O/kD2O ~ 2). In acid medium, the (N-Cl)-dipeptide undergoes disproportionation to a (N,N)-di-Cl-dipeptide, the very fast decomposition of the latter in deuterium oxide preventing a reliable estimation of the solvent isotope effect.Key words: chlorination, deuterium isotope effects, fractionation factors, peptide oxidation, water treatment.


1970 ◽  
Vol 23 (12) ◽  
pp. 2427
Author(s):  
ML Tonnet ◽  
AN Hambly

The values of the thermodynamic parameters of activation have been determined for the solvolysis of methanesulphonyl chloride in H2O and D2O and their mixtures with moderate amounts of dioxan. Some of the data are not in agreement with the postulate that the kinetic solvent isotope effect and the maximum in the rate of solvolysis produced by the addition of dioxan are due to changes in the initial state of the reacting system rather than to changes in the transition state. The addition of dioxan does not produce a large reduction in the solvent isotope effect as reported for the hydrolysis of t-butyl chloride and predicted to be general. The relative rates of solvolysis in mixtures of H2O and D2O are not in agreement with the analysis of such reactions by Swain and Thornton.


2021 ◽  
Author(s):  
Amani Alhifthi ◽  
Spencer Williams

1,2-<i>trans</i>-Glycosides hydrolyze through different mechanisms at different pH values, but systematic studies are lacking. Here we report the pH-rate constant profile for the hydrolysis of<i> </i>4-nitrophenyl β-D-glucoside. An inverse kinetic isotope effect (<i>k</i>(H<sub>3</sub>O<sup>+</sup>)/<i>k</i>(D<sub>3</sub>O<sup>+</sup>) = 0.63) in the acidic region indicates that the mechanism requires the formation of the conjugate acid of the substrate for the reaction to proceed, with heterolytic cleavage of the glycosidic C-O bond. Reactions in the pH-independent region exhibit general catalysis with a single proton in flight, a normal solvent isotope effect of <i>k</i><sub>H</sub>/<i>k</i><sub>D</sub> = 1.5, and when extrapolated to zero buffer concentration show a small solvent isotope effect <i>k</i>(H<sub>2</sub>O)/<i>k</i>(D<sub>2</sub>O) = 1.1, consistent with water attack through a dissociative mechanism. In the basic region, solvolysis in <sup>18</sup>O-labelled water and H<sub>2</sub>O/MeOH mixtures allowed detection of bimolecular hydrolysis and neighboring group participation, with a minor contribution of nucleophilic aromatic substitution. Under mildly basic conditions, a bimolecular concerted mechanism is implicated through an inverse solvent isotope effect of <i>k</i>(HO<sup>–</sup>)/<i>k</i>(DO<sup>–</sup>) = 0.5 and a strongly negative entropy of activation (D<i>S</i><sup>‡</sup> = –13.6 cal mol<sup>–1</sup> K<sup>–1</sup>). Finally, at high pH, an inverse solvent isotope effect of <i>k</i>(HO<sup>–</sup>)/<i>k</i>(DO<sup>–</sup>) = 0.6 indicates that the formation of 1,2-anhydrosugar is the rate determining step.<br>


1967 ◽  
Vol 45 (18) ◽  
pp. 2071-2077 ◽  
Author(s):  
B. N. Hendy ◽  
W. A. Redmond ◽  
R. E. Robertson

The temperature dependence of the rate of hydrolysis of α-bromoisobutyrate ion in water was determined over a temperature range 9–37 °C. From these data corresponding values of ΔH≠, ΔS≠, and ΔCP≠ have been derived. The implication of these terms, together with corresponding data for hydrolysis in D2O and for the secondary deuterium isotope effect from the hydrolysis of (CD3)2CBrCOO−, provide a basis for reexamining the detailed mechanism with particular reference to accompanying solvent reorganization.


Sign in / Sign up

Export Citation Format

Share Document