13C nuclear magnetic resonance spectra of some C19-diterpenoid alkaloids and their derivatives

1979 ◽  
Vol 57 (13) ◽  
pp. 1652-1655 ◽  
Author(s):  
S. William Pelletier ◽  
Naresh V. Mody ◽  
Rajinder S. Sawhney

The natural abundance carbon-13 nuclear magnetic resonance spectra of some C19-diterpenoid alkaloids and their alkamines (lappaconitine, lappaconine, lapaconidine, ranaconine, 14-dehydrobrowniine, aconine, pseudoaconine, deoxyaconine, and hypaconine) have been determined at 15.03 MHz. With the aid of proton decoupling techniques, additivity relationships, and comparison with spectra of related alkaloids, self-consistent and unambiguous assignments of nearly all carbon resonances for these alkaloids have been made. Some important chemical shift trends have been observed, which are useful for identifying the basic C19-diterpenoid alkaloid skeleton and the hydroxy and methoxy group substitution patterns in these alkaloids. On the basis of 13C nmr spectra of lappaconitine and lappaconine, the anthranoyl ester moiety is assigned to the C-4 position in lappaconitine. The 13C nmr spectra of lapaconidine, aconine, and pseudoaconine taken in pyridine and chloroform have been compared to determine the conformational changes of the ring A hydroxy groups in these alkaloids.

1977 ◽  
Vol 55 (18) ◽  
pp. 3304-3311 ◽  
Author(s):  
Donald W. Hughes ◽  
Bala C. Nalliah ◽  
Herbert L. Holland ◽  
David B. MacLean

The natural abundance 13C nuclear magnetic resonance spectra of a number of spirobenzylisoquinoline alkaloids and related model compounds have been recorded. The carbon resonances of the alkaloids were assigned by comparison with the spectra of other isoquinoline alkaloids and with those of the model compounds. It has been shown that 13C nmr spectroscopy may be used to differentiate between diastereomers in this series.


1979 ◽  
Vol 57 (23) ◽  
pp. 3168-3170 ◽  
Author(s):  
Henk Hiemstra ◽  
Hendrik A. Houwing ◽  
Okko Possel ◽  
Albert M. van Leusen

The 13C nmr spectra of oxazole and eight mono- and disubstituted derivatives have been analyzed with regard to the chemical shifts and the various carbon–proton coupling constants of the ring carbons. The data of the parent oxazole are compared with thiazole and 1-methylimidazole.


1979 ◽  
Vol 57 (4) ◽  
pp. 367-376 ◽  
Author(s):  
Pierre Lachance ◽  
S. Brownstein ◽  
Arthur M. Eastham

The identification of aliphatic hydrocarbons containing multiple asymmetric centers can be difficult because of the complexity of the nmr spectra and because in capillary chromatography the diastereomers may be resolved to varying degrees. We suggest that the most effective method for identifying such hydrocarbons is through the pattern of retention times developed by the mixture of diastereomers on a suitable capillary glc column.This paper presents the results of some studies of a series of alkanes having the general form C2H5—(CH—CH3)n—R, where n = 1 to 4, and includes the syntheses and 13C nmr spectra of the compounds.


1980 ◽  
Vol 58 (23) ◽  
pp. 2588-2591 ◽  
Author(s):  
Guy G. S. Dutton ◽  
Angela V. Savage ◽  
Michel Vignon

A β-D-galactosidase associated with bacteriophage [Formula: see text] has been used to depolymerize the capsular polysaccharide of Klebsiella serotype K18 into the hexasaccharide corresponding to one repeating unit of the polymer. The nmr spectra of the polymer and of the oligosaccharide are comparable, leading to the conclusion that the conformations in solution of the repeating unit of the two substances are similar.


1981 ◽  
Vol 59 (9) ◽  
pp. 1328-1330 ◽  
Author(s):  
Ajit K. Chakravarty ◽  
Satyesh C. Pakrashi ◽  
Jun Uzawa

The 13C nmr spectra of some 23-hydroxy spirostane sapogenins from Solanum hispidum Pers., mostly as their acetates, have been studied. The effect of different orientations of the substituents at C-23 and C-25 as well as that due to change in the stereochemistry at C-22 have been discussed. The unexpected absence of the γg effect of the axial 23-OH on C-25 in hispigenin (5), a 22βO-spirostane derivative, presumably results from ring F deformation brought about by the steric interaction between 20-Me and 23-OH groups.


1983 ◽  
Vol 61 (8) ◽  
pp. 1795-1799 ◽  
Author(s):  
Philip A. W. Dean

The previously reported 1:1 complexes formed in MeNO2, between M(SbF6)2 (M = Sn or Pb) and Ph2P(CH2)2PPh2, PhP[(CH2)2PPh2]2, MeC(CH2PPh2)3, P[(CH2)2PPh2]3, and [Formula: see text] have been studied by metal (119Sn or 207Pb) nmr. The metal chemical shifts span the comparatively narrow range of −586 to −792 ppm and 60 to −269 ppm, relative to the resonance of MMe4, for 119Sn and 207Pb nmr, respectively. The implications of these data regarding the denticity of the ligand in M(P[(CH2)2PPh2]3)2+ are discussed, and a comparison with the metal nmr spectra of related stannous and plumbous complexes is made.


Sign in / Sign up

Export Citation Format

Share Document