metal derivatives
Recently Published Documents


TOTAL DOCUMENTS

568
(FIVE YEARS 22)

H-INDEX

48
(FIVE YEARS 1)

Author(s):  
Patricia Saraiva Vilas Boas de Almeida ◽  
José Roberto da Silveira Maia ◽  
Mariana Caliman Falqueto ◽  
Leandro Licursi de Oliveira

Compounds of Cu(II) and Zn(II) with 3-R-1H-1,2,4-triazole-5-amine {R = methyl (mta), phenyl (pta)} were prepared and characterized by infrared spectroscopy (IR), multinuclear NMR (1H, 13C), electronic spectroscopy (UV-VIS), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), microanalyses and melting point. Dimeric, monomeric, and polymeric materials were synthesized in this work. The Zn(II)-1,2,4-triazole derivatives have the metal ion at the center of two geometric arrangements, being a tetrahedron for the complex-7 and 9, and an octahedron for the complex-8. The only polymeric material, complex-7, was characterized by the DSC analytical data. The Decomposition reaction of complex-8 in chloroform produced the complex-9, a aminoguanidine derivative, and the Zn(II)-benzoate compound. The IR and UV-VIS of Cu(II)-mta derivatives revealed two possible geometric patterns for the metallic ion; a distorted bipyramidal trigonal geometry for compounds 10 and 11 in solution, and in the solid state, the same geometry for complex-10, but for complex-11, the IR data suggest a distorted octahedral geometry. The biological assay of the 1,2,4-triazole compounds and their metal derivatives against Gram-positive and Gram-negative bacteria shown the compounds of Zn(II) as the only active materials with values of MIC within the range of 133.5 µM (83.3 µg / mL) to 360.7 µM (166.6 µg / mL).


INEOS OPEN ◽  
2021 ◽  
Vol 4 ◽  
Author(s):  
G. G. Nikiforova ◽  
◽  
V. G. Vasil'ev ◽  
M. I. Buzin ◽  
M. Yu. Yablokov ◽  
...  

The polymer-analogous transformations of an aromatic ionogenic polymer, namely, sulfonated polyphenylquinoxaline afford a range of polymer salts bearing alkali (Li+, Na+, K+), alkaline earth (Mg2+, Са2+, Ba 2+), and transition di- (Cu2+, Ni2+, Zn2+) and trivalent (La3+, In3+) metal ions. The resulting polymers are characterized by elemental and thermogravimetric analyses. The solubility and rheological properties of their dilute and concentrated solutions as well as sensor properties of the coatings based on these polymer salts are explored.


Electrochem ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 347-389
Author(s):  
Wan-Ting Chiu ◽  
Tso-Fu Mark Chang ◽  
Masato Sone ◽  
Hideki Hosoda ◽  
Agnès Tixier-Mita ◽  
...  

A comprehensive review of the electroactive materials for non-enzymatic glucose sensing and sensing devices has been performed in this work. A general introduction for glucose sensing, a facile electrochemical technique for glucose detection, and explanations of fundamental mechanisms for the electro-oxidation of glucose via the electrochemical technique are conducted. The glucose sensing materials are classified into five major systems: (1) mono-metallic materials, (2) bi-metallic materials, (3) metallic-oxide compounds, (4) metallic-hydroxide materials, and (5) metal-metal derivatives. The performances of various systems within this decade have been compared and explained in terms of sensitivity, linear regime, the limit of detection (LOD), and detection potentials. Some promising materials and practicable methodologies for the further developments of glucose sensors have been proposed. Firstly, the atomic deposition of alloys is expected to enhance the selectivity, which is considered to be lacking in non-enzymatic glucose sensing. Secondly, by using the modification of the hydrophilicity of the metallic-oxides, a promoted current response from the electro-oxidation of glucose is expected. Lastly, by taking the advantage of the redistribution phenomenon of the oxide particles, the usage of the noble metals is foreseen to be reduced.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1701
Author(s):  
R. A. Ilyas ◽  
S. M. Sapuan ◽  
M. R. M. Asyraf ◽  
D. A. Z. N. Dayana ◽  
J. J. N. Amelia ◽  
...  

Polymer composites filled with metal derivatives have been widely used in recent years, particularly as flame retardants, due to their superior characteristics, including high thermal behavior, low environmental degradation, and good fire resistance. The hybridization of metal and polymer composites produces various favorable properties, making them ideal materials for various advanced applications. The fire resistance performance of polymer composites can be enhanced by increasing the combustion capability of composite materials through the inclusion of metallic fireproof materials to protect the composites. The final properties of the metal-filled thermoplastic composites depend on several factors, including pore shape and distribution and morphology of metal particles. For example, fire safety equipment uses polyester thermoplastic and antimony sources with halogenated additives. The use of metals as additives in composites has captured the attention of researchers worldwide due to safety concern in consideration of people’s life and public properties. This review establishes the state-of-art flame resistance properties of metals/polymer composites for numerous industrial applications.


Author(s):  
Mohammad Faisal Umar ◽  
Mohd Rafatullah ◽  
Syed Zaghum Abbas ◽  
Mohamad Nasir Mohamad Ibrahim ◽  
Norli Ismail

Anthropogenic activities are largely responsible for the vast amounts of pollutants such as polycyclic aromatic hydrocarbons, cyanides, phenols, metal derivatives, sulphides, and other chemicals in wastewater. The excess benzene, toluene and xylene (BTX) can cause severe toxicity to living organisms in wastewater. A novel approach to mitigate this problem is the benthic microbial fuel cell (BMFC) setup to produce renewable energy and bio-remediate wastewater aromatic hydrocarbons. Several mechanisms of electrogens have been utilized for the bioremediation of BTX through BMFCs. In the future, BMFCs may be significant for chemical and petrochemical industry wastewater treatment. The distinct factors are considered to evaluate the performance of BMFCs, such as pollutant removal efficiency, power density, and current density, which are discussed by using operating parameters such as, pH, temperature and internal resistance. To further upgrade the BMFC technology, this review summarizes prototype electrode materials, the bioremediation of BTX, and their applications.


2021 ◽  
pp. 130385
Author(s):  
Ya-Xiong Wang ◽  
Cai-Ling Xie ◽  
Bo Deng ◽  
Hai-Xia Zhang ◽  
Li Huo ◽  
...  
Keyword(s):  

2021 ◽  
Vol 169 ◽  
pp. 130-142
Author(s):  
Bryan M. Córdova ◽  
Tiago Venâncio ◽  
Michael Olivera ◽  
Ronny G. Huamani-Palomino ◽  
A.C. Valderrama

Inorganics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 68
Author(s):  
Michael J. McGlinchey

The enhanced stabilization of a carbocationic site adjacent to a ferrocenyl moiety was recognized within a few years of the discovery of sandwich compounds. While a detailed understanding of the phenomenon was the subject of some early debate, researchers soon took advantage of it to control the ease and direction of a wide range of molecular rearrangements. We, here, discuss the progress in this area from the pioneering studies of the 1960s, to more recent applications in chromatography and analytical detection techniques, and currently in the realm of bioactive organometallic complexes. Several classic reactions involving ferrocenyl migrations, such as the pinacol, Wolff, Beckmann, and Curtius, are discussed, as well as the influence of the ferrocenyl substituent on the mechanisms of the Nazarov, Meyer-Schuster, benzoin, and Stevens rearrangements. The preparation and isomerizations of ferrocenyl-stabilized vinyl cations and vinylcyclopropenes, together with the specific cyclization of acetylcyclopentadienyl-metal derivatives to form 1,3,5-substituted benzenes, demonstrate the versatility and generality of this approach.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5742
Author(s):  
Ilaria Giuseppina Occhiuto ◽  
Roberto Zagami ◽  
Mariachiara Trapani ◽  
Maria Angela Castriciano ◽  
Andrea Romeo ◽  
...  

Under mild acidic conditions, various metal derivatives of tetrakis(4-N-methylpyridinium)porphyrin (gold(III), AuT4; cobalt(III), CoT4; manganese(III), MnT4 and zinc(II), ZnT4) catalytically promote the supramolecular assembling process of the diacid 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (H2TPPS4) into J-aggregates. The aggregation kinetics have been treated according to a well-established model that involves the initial formation of a critical nucleus containing m porphyrin units, followed by autocatalytic growth, in which the rate evolves as a power of time. An analysis of the extinction time traces allows to obtain the rate constants for the auto-catalyzed pathway, kc, and the number of porphyrins involved in the initial seeding. The aggregation kinetics have been investigated at fixed H2TPPS4 concentration as a function of the added metal derivatives MT4. The derived rate constants, kc, obey a rate law that is first order in [MT4] and depend on the specific nature of the catalyst in the order AuT4 > CoT4 > MnT4 > ZnT4. Both resonance light scattering (RLS) intensity and extinction in the aggregated samples increase on increasing [MT4]. With the exception of AuT4, the final aggregated samples obtained at the highest catalyst concentration exhibit a negative Cotton effect in the J-band region, evidencing the occurrence of spontaneous symmetry breaking. The role of the nature of the metal derivative in terms of overall charge and presence of axial groups will be discussed.


Sign in / Sign up

Export Citation Format

Share Document