Detection ofAeromonas hydrophilain a drinking- water distribution system: a field and pilot study

2001 ◽  
Vol 47 (8) ◽  
pp. 782-786 ◽  
Author(s):  
Christian Chauret ◽  
Christian Volk ◽  
Robin Creason ◽  
John Jarosh ◽  
Jeff Robinson ◽  
...  

A 16-month study was conducted on the presence of Aeromonas hydrophila in drinking water in Indiana, U.S.A. Enumeration was conducted in source water, in various sites within a water treatment plant, and in the distribution system in both bulk water and biofilm, as well as in a simulated (annular reactors) drinking-water distribution system. Presumptive Aeromonas spp. counts on source waters regularly approached 103–104CFU/100 mL, during summer months and granular activated carbon - filtered water counts ranged from <1 to 490 CFU/100 mL. In source water, presumptive Aeromonas levels were related to water temperature. Aeromonas hydrophila was never detected in the treatment plant effluent or distributed bulk water, showing disinfectant efficiency on suspended bacteria; however, isolates of A. hydrophila were identified in 7.7% of the biofilm samples, indicating a potential for regrowth and contamination of drinking-water distribution systems.Key words: Aeromonas hydrophila, distribution system, biofilm.

2005 ◽  
Vol 71 (12) ◽  
pp. 8611-8617 ◽  
Author(s):  
Adam C. Martiny ◽  
Hans-Jørgen Albrechtsen ◽  
Erik Arvin ◽  
Søren Molin

ABSTRACT In a model drinking water distribution system characterized by a low assimilable organic carbon content (<10 μg/liter) and no disinfection, the bacterial community was identified by a phylogenetic analysis of rRNA genes amplified from directly extracted DNA and colonies formed on R2A plates. Biofilms of defined periods of age (14 days to 3 years) and bulk water samples were investigated. Culturable bacteria were associated with Proteobacteria and Bacteriodetes, whereas independently of cultivation, bacteria from 12 phyla were detected in this system. These included Acidobacteria, Nitrospirae, Planctomycetes, and Verrucomicrobia, some of which have never been identified in drinking water previously. A cluster analysis of the population profiles from the individual samples divided biofilms and bulk water samples into separate clusters (P = 0.027). Bacteria associated with Nitrospira moscoviensis were found in all samples and encompassed 39% of the sequenced clones in the bulk water and 25% of the biofilm community. The close association with Nitrospira suggested that a large part of the population had an autotrophic metabolism using nitrite as an electron donor. To test this hypothesis, nitrite was added to biofilm and bulk water samples, and the utilization was monitored during 15 days. A first-order decrease in nitrite concentration was observed for all samples with a rate corresponding to 0.5 × 105 to 2 × 105 nitrifying cells/ml in the bulk water and 3 × 105 cells/cm2 on the pipe surface. The finding of an abundant nitrite-oxidizing microbial population suggests that nitrite is an important substrate in this system, potentially as a result of the low assimilable organic carbon concentration. This finding implies that microbial communities in water distribution systems may control against elevated nitrite concentrations but also contain large indigenous populations that are capable of assisting the depletion of disinfection agents like chloramines.


2001 ◽  
Vol 47 (8) ◽  
pp. 782-786 ◽  
Author(s):  
Christian Chauret ◽  
Christian Volk ◽  
Robin Creason ◽  
John Jarosh ◽  
Jeff Robinson ◽  
...  

2009 ◽  
Vol 43 (20) ◽  
pp. 5005-5014 ◽  
Author(s):  
Jeffrey G. Szabo ◽  
Christopher A. Impellitteri ◽  
Shekar Govindaswamy ◽  
John S. Hall

2007 ◽  
Vol 2007 (1) ◽  
pp. 449-467
Author(s):  
Stacia L. Thompson ◽  
Elizabeth Casman ◽  
Paul Fischbeck ◽  
Mitchell J. Small ◽  
Jeanne M. VanBriesen

Author(s):  
Pirjo-Liisa Rantanen ◽  
Ilkka Mellin ◽  
Minna Keinänen-Toivola ◽  
Merja Ahonen ◽  
Riku Vahala

We studied the seasonal variation of nitrite exposure in a drinking water distribution system (DWDS) with monochloramine disinfection in the Helsinki Metropolitan Area. In Finland, tap water is the main source of drinking water, and thus the nitrite in tap water increases nitrite exposure. Our data included both the obligatory monitoring and a sampling campaign data from a sampling campaign. Seasonality was evaluated by comparing a nitrite time series to temperature and by calculating the seasonal indices of the nitrite time series. The main drivers of nitrite seasonality were the temperature and the water age. We observed that with low water ages (median: 6.7 h) the highest nitrite exposure occurred during the summer months, and with higher water ages (median: 31 h) during the winter months. With the highest water age (190 h), nitrite concentrations were the lowest. At a low temperature, the high nitrite concentrations in the winter were caused by the decelerated ammonium oxidation. The dominant reaction at low water ages was ammonium oxidation into nitrite and, at high water ages, it was nitrite oxidation into nitrate. These results help to direct monitoring appropriately to gain exact knowledge of nitrite exposure. Also, possible future process changes and additional disinfection measures can be designed appropriately to minimize extra nitrite exposure.


Sign in / Sign up

Export Citation Format

Share Document