The dynamics of coarse woody debris in boreal Swedish forests are similar between stream channels and adjacent riparian forests

2006 ◽  
Vol 36 (5) ◽  
pp. 1139-1148 ◽  
Author(s):  
Niklas Dahlström ◽  
Christer Nilsson

Although numerous studies have focused on the dynamics of coarse woody debris (CWD) in boreal Fennoscandian forests, information on CWD in streams remains limited. To achieve a better understanding of CWD dynamics in streams we compared amounts and characteristics of CWD between streams and adjacent riparian forests in old-growth and managed forest sites, respectively. We also identified distances to the sources of CWD and evaluated these in relation to the lateral zonation of riparian trees. CWD volumes found in the stream channels were related to, but exceeded, the volumes found in the adjacent forest. In-channel volumes separated by species were better correlated with terrestrial volumes of CWD than with volumes of living trees. Tree species appeared to be zoned across the riparian zone, with slightly higher abundances of deciduous trees and lower abundances of Scots pine trees close to the stream. Similar to upland forests, riparian forests were dominated by coniferous tree species, mainly Norway spruce (Picea abies (L.) Karst.). These findings suggest large similarities in CWD input between streams and riparian forests and substantially slower decomposition rates in stream channels compared with those in riparian forest. The results provide an improved basis for creating reliable models of CWD supply and maintenance in streams based on knowledge of forest development and CWD dynamics in the terrestrial environment. Site productivity could potentially be used to predict CWD volumes in stream channels under pristine conditions.

2019 ◽  
Vol 448 ◽  
pp. 312-320 ◽  
Author(s):  
Olesya V. Dulya ◽  
Igor E. Bergman ◽  
Vladimir V. Kukarskih ◽  
Evgenii L. Vorobeichik ◽  
Georgii Yu. Smirnov ◽  
...  

1988 ◽  
Vol 45 (12) ◽  
pp. 2080-2086 ◽  
Author(s):  
C. W. Andrus ◽  
B. A. Long ◽  
H. A. Froehlich

Large quantities of woody debris persisted 50 yr after logging and fire in stream channels of a small coastal Oregon watershed. Debris from the current stand represented only 14% of total debris volume and 8% of debris volume responsible for creating pools. The greatest number of pools were located in downstream sections of the watershed where gradient was reduced, discharge was increased, and streambed material was finer. Seventy percent of pools with a volume greater than 1.0 m3 were associated with woody debris in the channel. Composition of the current riparian forest varied with topography. Alder stands dominated moist terrace sites adjacent to channels, whereas slopes contained a mixture of alder and conifer. Study results indicate that riparian trees must be left to grow longer than 50 yr to ensure that an adequate, long-term supply of woody debris is available to stream channels. Debris from previous stands plays a crucial role in the interim and should not be removed from stream channels.


1994 ◽  
Vol 24 (9) ◽  
pp. 1933-1938 ◽  
Author(s):  
Michael K. Young

Following fire, changes in streamflow and bank stability in burned watersheds can mobilize coarse woody debris. In 1990 and 1991, I measured characteristics of coarse woody debris and standing riparian trees and snags in Jones Creek, a watershed burned in 1988, and in Crow Creek, an unburned watershed. The mean diameter of riparian trees along Jones Creek was less than that of trees along Crow Creek, but the coarse woody debris in Jones Creek was greater in mean diameter. Tagged debris in Jones Creek was three times as likely to move, and moved over four times as far as such debris in Crow Creek. In Jones Creek, the probability of movement was higher for tagged pieces that were in contact with the stream surface. Larger pieces tended to be more stable in both streams. It appears that increased flows and decreased bank stability following fire increased the transport of coarse woody debris in the burned watershed. Overall, debris transport in Rocky Mountain streams may be of greater significance than previously recognized.


2008 ◽  
Vol 38 (7) ◽  
pp. 1897-1910 ◽  
Author(s):  
I. A. Hood ◽  
P. N. Beets ◽  
J. F. Gardner ◽  
M. O. Kimberley ◽  
M. W.P. Power ◽  
...  

Fungi were isolated to determine the predominant decomposer species active in the coarse woody debris in a beech forest in the central North Island of New Zealand. Basidiomycetes were obtained in 55% of 4569 isolation attempts from discs cut from six trees each of Nothofagus fusca (Hook. F.) Oerst. and Nothofagus menziesii (Hook. F.) Oerst. uprooted during a storm 24 years earlier. Percentage yields varied significantly among trees but not between tree species. However, for N. fusca, basidiomycetes were obtained less frequently from stems of greater mean diameter. In total, 96% of basidiomycete isolates were composed of 18 species, the most abundant being Armillaria novae-zelandiae (G. Stev.) Herink, mainly present in the outer 12 cm, and Ganoderma cf. applanatum sensu Wakef. and Cyclomyces tabacinus (Mont.) Pat., which penetrated more deeply. These fungi were distributed along the stems as somatically incompatible colonies reaching lengths of 11, 2, and 3 m for each species, respectively; those of G. cf. applanatum were separated by brown pseudosclerotial plates. Fruiting of these species was significantly associated with isolation of cultures and, for G. cf. applanatum and C. tabacinus, provided a reliable guide to stem colonization. Basidiomycete diversity in the Nothofagus stems was greater than in two podocarp species in an earlier study. Data from this investigation are being used to assess how decay fungi, together with other factors, influence rates of decomposition of indigenous coarse woody debris.


2019 ◽  
Vol 438 ◽  
pp. 96-102 ◽  
Author(s):  
Loretta G. Garrett ◽  
Mark O. Kimberley ◽  
Graeme R. Oliver ◽  
Mallory Parks ◽  
Stephen H. Pearce ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document