stream channels
Recently Published Documents


TOTAL DOCUMENTS

388
(FIVE YEARS 70)

H-INDEX

44
(FIVE YEARS 4)

2021 ◽  
Vol 9 ◽  
Author(s):  
Kanayim Teshebaeva ◽  
Ko J. van Huissteden ◽  
Helmut Echtler ◽  
Alexander V. Puzanov ◽  
Dmitry N. Balykin ◽  
...  

We investigate permafrost surface features revealed from satellite radar data in the Siberian arctic at the Yamal peninsula. Surface dynamics analysis based on SRTM and TanDEM-X DEMs shows up to 2 m net loss of surface relief between 2000 and 2014 indicating a highly dynamic landscape. Surface features for the past 14 years reflect an increase in small stream channels and a number of new lakes that developed, likely caused by permafrost thaw. We used Sentinel-1 SAR imagery to measure permafrost surface changes. Owing to limited observation data we analyzed only 2 years. The InSAR time-series has detected surface displacements in three distinct spatial locations during 2017 and 2018. At these three locations, 60–120 mm/yr rates of seasonal surface permafrost changes are observed. Spatial location of seasonal ground displacements aligns well with lithology. One of them is located on marine sediments and is linked to anthropogenic impact on permafrost stability. Two other areas are located within alluvial sediments and are at the top of topographic elevated zones. We discuss the influence of the geologic environment and the potential effect of local upwelling of gas. These combined analyses of InSAR time-series with analysis of geomorphic features from DEMs present an important tool for continuous process monitoring of surface dynamics as part of a global warming risk assessment.


2021 ◽  
Vol 13 (23) ◽  
pp. 4803
Author(s):  
Sani Success Ojogbane ◽  
Shattri Mansor ◽  
Bahareh Kalantar ◽  
Zailani Bin Khuzaimah ◽  
Helmi Zulhaidi Mohd Shafri ◽  
...  

The detection of buildings in the city is essential in several geospatial domains and for decision-making regarding intelligence for city planning, tax collection, project management, revenue generation, and smart cities, among other areas. In the past, the classical approach used for building detection was by using the imagery and it entailed human–computer interaction, which was a daunting proposition. To tackle this task, a novel network based on an end-to-end deep learning framework is proposed to detect and classify buildings features. The proposed CNN has three parallel stream channels: the first is the high-resolution aerial imagery, while the second stream is the digital surface model (DSM). The third was fixed on extracting deep features using the fusion of channel one and channel two, respectively. Furthermore, the channel has eight group convolution blocks of 2D convolution with three max-pooling layers. The proposed model’s efficiency and dependability were tested on three different categories of complex urban building structures in the study area. Then, morphological operations were applied to the extracted building footprints to increase the uniformity of the building boundaries and produce improved building perimeters. Thus, our approach bridges a significant gap in detecting building objects in diverse environments; the overall accuracy (OA) and kappa coefficient of the proposed method are greater than 80% and 0.605, respectively. The findings support the proposed framework and methodologies’ efficacy and effectiveness at extracting buildings from complex environments.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12457
Author(s):  
Ewelina Szczepocka ◽  
Paulina Nowicka-Krawczyk ◽  
Rafał M. Olszyński ◽  
Joanna Żelazna-Wieczorek

Transformation of river and stream channels disrupts their natural ecological cycles and interrupts the continuum of their ecosystems. Changes in natural hydromorphological conditions transform lotic communities into those atypical of flowing waters, resulting in bioassessment procedures yielding incorrect results. This study shows how hydromorphological transformations of ecosystems affect the ecological status bioassessment results by disturbing diatom communities typical for rivers. Moreover, the article presents a new biological assessment procedure for urban transformed rivers including the verification of the community structure based on autecology and quantity of species. The ecological status of the ecosystem was assessed using benthic diatom assemblages and supported with results of hydrochemical analysis. The structure of the assemblages and their relationships between individual sampling sites were clarified by shade plot and multivariate data analyses. The analysis of dominant species vitality at sampling sites and their autecology gave the foundation for modification of taxa data matrix and recalculation the diatom indices. Biological assessment showed that one of the artificial ponds constructed at the stream channel was characterized by good ecological status, and its presence strongly affected the state of the downstream ecosystem following the development of a unique assemblage of diatoms that prefer oligosaprobic and oligotrophic waters. The presence of these species was also noted in the downstream sections, but most of the cells were dead. As the indicator values of these taxa are high, their presence artificially increased the ecological status of the stream, resulting in the hydrochemical assessment not being in line with the bioassessment. Therefore, a new procedure was adopted in which non-characteristic taxa for the downstream sections were excluded from analysis. This approach corrected the results of bioassessment characterizing the ecological status of the stream as poor along its entire course, with the exception of this unique pond. For hydromorphologically transformed streams and rivers with disturbed channel continuity, the correct result of an incorrect diatom-based bioassessment may be retrieved after excluding species unusual for the type of ecosystem from the studied assemblages, i.e., the species which are unable to reproduce in that area and are only carried into it by the water flow. Assessment of the ecological status of aquatic ecosystems based on biotic factors is an essential tool of aquatic ecosystems monitoring in many countries. This type of assessment requires a multifaceted approach, in particular, to identify factors that may disrupt this assessment. Standardization of biomonitoring methods is an important step in correct assessment; thus, the findings of this paper will be useful in routine biomonitoring around the world.


2021 ◽  
Vol 13 (22) ◽  
pp. 4566
Author(s):  
Carl Legleiter ◽  
Paul Kinzel

Remote sensing of flow conditions in stream channels could facilitate hydrologic data collection, particularly in large, inaccessible rivers. Previous research has demonstrated the potential to estimate flow velocities in sediment-laden rivers via particle image velocimetry (PIV). In this study, we introduce a new framework for also obtaining bathymetric information: Depths Inferred from Velocities Estimated by Remote Sensing (DIVERS). This approach is based on a flow resistance equation and involves several assumptions: steady, uniform, one-dimensional flow and a direct proportionality between the velocity estimated at a given location and the local water depth, with no lateral transfer of mass or momentum. As an initial case study, we performed PIV and inferred depths from videos acquired from a helicopter hovering at multiple waypoints along a large river in central Alaska. The accuracy of PIV-derived velocities was assessed via comparison to field measurements and the performance of an optimization-based approach to DIVERS specification of roughness


Hydrobiologia ◽  
2021 ◽  
Author(s):  
P. Saffarinia ◽  
K. E. Anderson ◽  
D. B. Herbst

AbstractFreshwater systems are projected to experience increased hydrologic extremes under climate change. To determine how small streams may be impacted by shifts in flow regimes, we experimentally simulated flow loss over the span of three summers in nine 50 m naturally fed stream channels. The aquatic insect community of these streams was sampled before, during, and after experimental drought treatments as well as following one unforeseen flood event. Abundance, richness, and beta diversity were measured as indicators of biotic effects of altered flow regimes. Abundance declined in proportion to flow loss. In contrast, we observed a threshold response in richness where richness did not decrease except in channels where losses of surface flow occurred and disconnected pools remained. The flood reset this pattern, but communities continued their prior trajectories shortly thereafter. Beta diversity partitions suggested no strong compositional shifts, and that the effect of drought was largely experienced uniformly across taxa until flow cessation. Pools served as a refuge, maintaining stable abundance gradients and higher richness longer than riffles. Upon flow resumption, abundance and richness returned to pre-treatment levels within one year. Our results suggest that many taxa present were resistant to drought conditions until loss in surface flow occurred.


Lithosphere ◽  
2021 ◽  
Vol 2021 (Special 2) ◽  
Author(s):  
Chen Gan ◽  
Ai Ming ◽  
Zheng Wenjun ◽  
Bi Haiyun ◽  
Liu Jinrui ◽  
...  

Abstract The Elashan fault (ELSF) and Qinghainanshan fault (QHNF), two major faults developed around the Qinghai Lake and Chaka-Gonghe basins, are of great importance for investigating the deformation model of the internal northeastern Tibetan Plateau. However, their late Pleistocene slip rates remain poorly constrained. In this study, we combine high-resolution topography acquired from unmanned aerial vehicles (UAV) and geomorphological dating to calculate the slip rates of the two faults. We visited the central ELSF and western QHNF and measured displaced terraces and stream channels. We collected 10Be samples on the surface of terraces to constrain the abandonment ages. The dextral slip rate of the central segment of the Elashan fault is estimated to be 2.6±1.2 mm/yr. The uplift rates since the late Pleistocene of the Elashan and Qinghainanshan faults are 0.4±0.04 mm/yr and 0.2±0.03 mm/yr, respectively. Comparing the geological rates with the newly published global positioning system (GPS) rates, we find that the slip rates of the major strike-slip faults around the Qinghai Lake and Chaka-Gonghe basins are approximately consistent from the late Pleistocene to the present day. The overall NE shortening rates by summing up the geological slip rates on major faults between the East Kunlun and Haiyuan faults are ~3.4 mm/yr, smaller than the geodetic shortening rates (~4.9 to 6.4 mm/yr), indicating that distributed deformation plays an important role in accommodating the regional deformation. By analyzing the geometrical and kinematic characteristics of the major faults surrounding the basins, we suggest that the kinematic deformation of the internal northeastern Tibet is a nonrigid bookshelf model that consists of counterclockwise rotation (~0.8° Myr-1) and distributed thrusting.


Author(s):  
Raymond Sullivan ◽  
Ryan P. Fay ◽  
Carl Schaefer ◽  
Alan Deino ◽  
Stephen W. Edwards

ABSTRACT Two spatially separated areas of Neogene volcanic rocks are located on the northeast limb of the Mount Diablo anticline. The southernmost outcrops of volcanics are 6 km east of the summit of Mount Diablo in the Marsh Creek area and consist of ~12 hypabyssal dacite intrusions dated at ca. 7.8–7.5 Ma, which were intruded into the Great Valley Group of Late Cretaceous age. The intrusions occur in the vicinity of the Clayton and Diablo faults. The rocks are predominantly calc-alkaline plagioclase biotite dacites, but one is a tholeiitic plagioclase andesite. Mercury mineralization was likely concomitant with emplacement of these late Miocene intrusions. The northern most outcrops of Neogene volcanic rocks occur ~15 km to the north of Mount Diablo in the Concord Naval Weapons Station and the Los Medanos Hills and are probably parts of a single andesite flow. A magnetometer survey indicates that the flow originated from a feeder dike along the Clayton fault. The lava flow is flat-lying and occu pies ancient stream channels across an erosional surface of tilted Markley Sandstone of middle Eocene age. New radiometric dates of the flow yield an age of 5.8–5.5 Ma, but due to alteration the age should be used with caution. The flow is a calc-alkaline andesite rich in clinopyroxene and plagioclase. What appear to be uplifted erosional remnants of the flow can be traced northeastward in the Los Medanos Hills across a surface of tilted Cenozoic rocks that eventually rest on formations as young as the Lawlor Tuff dated at 4.865 ± 0.011 Ma. This stratigraphic relationship suggests that the andesite flow is probably late Pliocene in age and was impacted by the more recent uplift of the Los Medanos Hills but postdates the regional folding and faulting of the rocks of Mount Diablo. In terms of timing, location, and composition, the evidence suggests these two areas of dacitic and andesitic volcanics fit into a series of migrating volcanic centers in the California Coast Ranges that erupted following the northward passage of the Mendocino Triple Junction.


2021 ◽  
Vol 13 (17) ◽  
pp. 3380 ◽  
Author(s):  
Joan Grau ◽  
Kang Liang ◽  
Jae Ogilvie ◽  
Paul Arp ◽  
Sheng Li ◽  
...  

Defining stream channels in a watershed is important for assessing freshwater habitat availability, complexity, and quality. However, mapping channels of small tributary streams becomes challenging due to frequent channel change and dense vegetation coverage. In this study, we used an Unmanned Aerial Vehicle (UAV) and photogrammetry method to obtain a 3D Digital Surface Model (DSM) to estimate the total in-stream channel and channel width within grazed riparian pastures. We used two methods to predict the stream channel boundary: the Slope Gradient (SG) and Vertical Slope Position (VSP). As a comparison, the same methods were also applied using low-resolution DEM, obtained with traditional photogrammetry (coarse resolution) and two more LiDAR-derived DEMs with different resolution. When using the SG method, the higher-resolution, UAV-derived DEM provided the best agreement with the field-validated area followed by the high-resolution LiDAR DEM, with Mean Squared Errors (MSE) of 1.81 m and 1.91 m, respectively. The LiDAR DEM collected at low resolution was able to predict the stream channel with a MSE of 3.33 m. Finally, the coarse DEM did not perform accurately and the MSE obtained was 26.76 m. On the other hand, when the VSP method was used we found that low-resolution LiDAR DEM performed the best followed by high-resolution LiDAR, with MSE values of 9.70 and 11.45 m, respectively. The MSE for the UAV-derived DEM was 15.12 m and for the coarse DEM was 20.78 m. We found that the UAV-derived DEM could be used to identify steep bank which could be used for mapping the hydrogeomorphology of lower order streams. Therefore, UAVs could be applied to efficiently map small stream channels in order to monitor the dynamic changes occurring in these ecosystems at a local scale. However, the VSP method should be used to map stream channels in small watersheds when high resolution DEM data is not available.


Author(s):  
Shagun Sharma ◽  
Nicholas J. Wander ◽  
William G. Ryan ◽  
Marissa Lautzenheiser ◽  
Teresa J. Cutright ◽  
...  

2021 ◽  
Vol 13 (16) ◽  
pp. 3109
Author(s):  
Peng Chen ◽  
Bing Yan ◽  
Yuan Liu

Systematic deflection of drainage systems along strike-slip faults is the combination of repeated faulting slipping and continuous headward erosion accumulated on the stream channels. The measurement and analysis of systematically deflected stream channels will enhance our understanding on the deformational behaviors of strike-slip faults and the relationship between topographic response and active strike-slip faulting. In this study, detailed interpretation and analysis of remote sensing images and DEM data were carried out along the Altyn Tagh Fault, one typical large-scale strike-slip fault in the northern Tibetan Plateau, and together with the statistical results of offset amounts of 153 stream channels, revealed that (i) the drainage systems have been systematically deflected and/or offset in sinistral along the active Altyn Tagh Fault; (ii) The offset amounts recorded by stream channels vary in the range of 7 m to 72 km, and indicate a positively related linear relationship between the upstream length L and the offset amount D, the channel with bedrock upstream generally has a better correlation between L and D than that of non-bedrock upstream; (iii) River capture and abandonment are commonly developed along the Altyn Tagh Fault, which probably disturbed the continuous accumulation of offset recorded on individual stream channel, suggesting that the real maximum cumulative displacement recorded by stream channels might be larger than 72 km (lower bound) along the Altyn Tagh Fault. Along with the cumulative displacements recorded by other regional-scale strike-slip faults in the Tibetan Plateau, these results demonstrate that the magnitude of tectonic extrusion along these first-order strike-slip faults after the collision of India–Asia plates might be limited.


Sign in / Sign up

Export Citation Format

Share Document