Aerial application of verbenone reduces attack of lodgepole pine by mountain pine beetle

1992 ◽  
Vol 22 (4) ◽  
pp. 436-441 ◽  
Author(s):  
Patrick J. Shea ◽  
Mark D. McGregor ◽  
Gary E. Daterman

Mountain pine beetle, Dendroctonusponderosae Hopkins, is the primary pest affecting lodgepole pine, Pinuscontorta var. latifolia Engelm., ecosystems in western North America. In 1988, aerial treatments of the antiaggregation pheromone, verbenone, were applied to lodgepole pine stands infested with mountain pine beetle in northwestern Montana. The pheromone was formulated by PHERO TECH Inc. in controlled-release, cylindrical 5 × 5 mm plastic beads and applied without benefit of a sticker at the rate of 54 g verbenone per hectare. There were significantly fewer successfully attacked trees on the treated plots, as evidenced by (i) a fourfold greater incidence of current-year attacked trees per hectare in the untreated check plots and (ii) the significantly lower (α = 0.05) ratio of 1988:1987 attacked trees in the treated plots. Further, the number of trees per hectare resisting attacks (as reflected by number of trees pitching out bark beetles) was higher (α = 0.05) in the treated plots. More pitch outs occurred in treated plots presumably because avoidance of verbenone by beetles reduced the number of beetles below that needed to overcome the natural resistance of attacked trees.

1985 ◽  
Vol 117 (11) ◽  
pp. 1445-1446 ◽  
Author(s):  
Charles E. Richmond

The mountain pine beetle, Dendroctonus ponderosae Hopkins, is one of the most destructive bark beetles found on pine in western North America (McCambridge et al. 1979), particularly in forests of lodgepole pine, Pinus contorta Douglas var. latifolia (Furniss and Carolin 1977). The treatment registered in the United States for the protection of high-value trees in residential areas and recreational areas is 2% carbaryl applied to the bole of the tree with a hydraulic sprayer. Recently, pine oil, a derivative of paper pulp waste, was found to be an effective non-insecticidal repellent against several species of bark beetles (Nijholt et al. 1981).


1964 ◽  
Vol 42 (5) ◽  
pp. 527-532 ◽  
Author(s):  
Robena C. Robinson-Jeffrey ◽  
A. H. Hertha Grinchenko

A new fungus, Ceratocystis huntii sp. nov., occurring on lodgepole pine (Pinus conlorla Dougl. var. latifolia Engelm.), attacked by the mountain pine beetle (Dendroctonusmonticolae Hopk), is described and figured.


2000 ◽  
Vol 132 (6) ◽  
pp. 799-810 ◽  
Author(s):  
L. Safranyik ◽  
D.A. Linton ◽  
T.L. Shore

AbstractBark beetles were trapped for two summers in a mature stand of lodgepole pine, Pinus contorta var. latifolia Engelmann (Pinaceae), infested by mountain pine beetle, Dendroctonus ponderosae Hopkins, near Princeton, British Columbia. Columns of flight-barrier traps were suspended next to uninfested live trees and from dead brood trees containing new adult beetles. The brood trees had been treated in the previous year with mountain pine beetle pheromone bait alone or in combination with Ips pini Say (Coleoptera: Scolytidae) pheromone bait and subsequently killed by mountain pine beetles. A total of 3376 individuals from 30 species of Scolytidae were captured in the traps. Most of the species for which lodgepole pine is a nonhost or occasional host were captured in low numbers (one or two specimens). The most abundant species (> 30 individuals) were D. ponderosae, I. pini, Hylurgops porosus LeConte, Pityogenes knechteli Swaine, and Trypodendron lineatum Olivier. The treatments affected captures of mountain pine beetles and I. pini but only in the year when trees were either unbaited or baited simultaneously for mountain pine beetle and I. pini. There were significant differences among the five most abundant species in the mean heights and mean Julian dates of capture. In addition to host condition requirements, these differences reflected partitioning of the food and habitat resource and competitive interactions among species. There was no interaction between treatment and trap height, indicating that treatment did not affect the height distribution of flying beetles.


2011 ◽  
Vol 41 (12) ◽  
pp. 2403-2412 ◽  
Author(s):  
Daniel M. Kashian ◽  
Rebecca M. Jackson ◽  
Heather D. Lyons

Extensive outbreaks of the mountain pine beetle ( Dendroctonus ponderosae Hopkins) will alter the structure of many stands that will likely be attacked again before experiencing a stand-replacing fire. We examined a stand of lodgepole pine ( Pinus contorta var. latifolia Engelm. ex S. Watson) in Grand Teton National Park currently experiencing a moderate-level outbreak and previously attacked by mountain pine beetle in the 1960s. Consistent with published studies, tree diameter was the main predictor of beetle attack on a given tree, large trees were preferentially attacked, and tree vigor, age, and cone production were unimportant variables for beetle attack at epidemic levels. Small trees killed in the stand were killed based mainly on their proximity to large trees and were likely spatially aggregated with large trees as a result of the previous outbreak. We concluded that the driving factors of beetle attack and their spatial patterns are consistent across outbreak severities but that stand structure altered by the previous outbreak had implications for the current outbreaks in the same location. This study should catalyze additional research that examines how beetle-altered stand structure affects future outbreaks — an important priority for predicting their impacts under climate change scenarios that project increases in outbreak frequency and extent.


2008 ◽  
Vol 101 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Xuejun Pan ◽  
Dan Xie ◽  
Richard W. Yu ◽  
Jack N. Saddler

Sign in / Sign up

Export Citation Format

Share Document