THE INHIBITION OF OXIDATIVE AND PHOSPHORYLATIVE ENZYMES IN RAT LIVER MITOCHONDRIA BY AMINOAZOBENZENE DERIVATIVES

1960 ◽  
Vol 38 (1) ◽  
pp. 1-11 ◽  
Author(s):  
W. C. McMurray

The liver carcinogen, dimethylaminoazobenzene, inhibited in vitro the oxidation of a variety of pyridine nucleotide linked substrates of rat liver mitochondria without affecting the process of oxidative phosphorylation. Cytochrome c oxidase activity was not inhibited by the carcinogen, nor was the succinoxidase activity, but the phosphorylation accompanying succinate oxidation was uncoupled. Similar effects were noted with other aminoazobenzene derivatives, but did not appear to be correlated with the ability of the compounds to evoke tumors.The site of the respiratory inhibition by dimethylaminoazobenzene appears to be at the level between reduced pyridine nucleotide and cytochrome c in the respiratory chain. Mitochondrial dehydrogenase activity was not inhibited, while the oxidation of reduced diphosphopyridine nucleotide was markedly decreased. The reduction of the electron acceptor, ferricyanide, by pyridine nucleotide linked substrates was also strongly inhibited but the reduction of tetrazolium compounds was not affected. The latter observations suggest that dimethylaminoazobenzene produces a metabolic block between reduced flavin and cytochrome c in the mitochondrial electron transport system.

1960 ◽  
Vol 38 (1) ◽  
pp. 1-11
Author(s):  
W. C. McMurray

The liver carcinogen, dimethylaminoazobenzene, inhibited in vitro the oxidation of a variety of pyridine nucleotide linked substrates of rat liver mitochondria without affecting the process of oxidative phosphorylation. Cytochrome c oxidase activity was not inhibited by the carcinogen, nor was the succinoxidase activity, but the phosphorylation accompanying succinate oxidation was uncoupled. Similar effects were noted with other aminoazobenzene derivatives, but did not appear to be correlated with the ability of the compounds to evoke tumors.The site of the respiratory inhibition by dimethylaminoazobenzene appears to be at the level between reduced pyridine nucleotide and cytochrome c in the respiratory chain. Mitochondrial dehydrogenase activity was not inhibited, while the oxidation of reduced diphosphopyridine nucleotide was markedly decreased. The reduction of the electron acceptor, ferricyanide, by pyridine nucleotide linked substrates was also strongly inhibited but the reduction of tetrazolium compounds was not affected. The latter observations suggest that dimethylaminoazobenzene produces a metabolic block between reduced flavin and cytochrome c in the mitochondrial electron transport system.


2011 ◽  
Vol 300 (5) ◽  
pp. C1193-C1203 ◽  
Author(s):  
Boris F. Krasnikov ◽  
Nickolay S. Melik-Nubarov ◽  
Lubava D. Zorova ◽  
Alevtina E. Kuzminova ◽  
Nickolay K. Isaev ◽  
...  

A synthetic polyanion composed of styrene, maleic anhydride, and methacrylic acid (molar ratio 56:37:7) significantly inhibited the respiration of isolated rat liver mitochondria in a time-dependent fashion that correlated with 1) collapse of the mitochondrial membrane potential and 2) high amplitude mitochondrial swelling. The process is apparently Ca2+ dependent. Since it is blocked by cyclosporin A, the process is ascribed to induction of the mitochondrial permeability transition. In mitoplasts, i.e., mitochondria lacking their outer membranes, the polyanion rapidly blocked respiration. After incubation of rat liver mitochondria with the polyanion, cytochrome c was released into the incubation medium. In solution, the polyanion modified by conjugation with fluorescein formed a complex with cytochrome c. Addition of the polyanion to cytochrome c-loaded phosphatidylcholine/cardiolipin liposomes induced the release of the protein from liposomal membrane evidently due to coordinated interplay of Coulomb and hydrophobic interactions of the polymer with cytochrome c. We conclude that binding of the polyanion to cytochrome c renders it inactive in the respiratory chain due to exclusion from its native binding sites. Apparently, the polyanion interacts with cytochrome c in mitochondria and releases it to the medium through breakage of the outer membrane as a result of severe swelling. Similar properties were demonstrated for the natural polyanion, tobacco mosaic virus RNA. An electron microscopy study confirmed that both polyanions caused mitochondrial swelling. Exposure of cerebellar astroglial cells in culture to the synthetic polyanion resulted in cell death, which was associated with nuclear fragmentation.


Sign in / Sign up

Export Citation Format

Share Document