cytochrome c release
Recently Published Documents


TOTAL DOCUMENTS

1012
(FIVE YEARS 119)

H-INDEX

105
(FIVE YEARS 6)

2021 ◽  
Vol 12 (1) ◽  
pp. 120
Author(s):  
Young Ock Kim ◽  
Arunaksharan Narayanankutty ◽  
Aswathi Moothakoottil Kuttithodi ◽  
Hak-Jae Kim ◽  
Sae Won Na ◽  
...  

Azima tetracantha is a traditionally used medicinal plant in the Ayurvedic system and folk medicines. The plant has been used for various purposes including inflammatory ailments, arthritis, and various types of toxicities. There are no available reports on its anticancer activity; hence, the study aimed to evaluate its anti-proliferative potential in gastric cancer cells (AGS and KATO III). We observed a dose-dependent decrease in cell proliferation in both the gastric cancer cells; furthermore, a concomitant reduction in the cellular antioxidant status was observed. Pre-treatment with A. tetracantha methanol extract showed a significant reduction in intracellular glutathione levels, and subsequently raised thiobarbituric acid reactive substances. Together with this, a significant increase in the cytochrome c release was noted in A. tetracantha treated cells, alongwith an increase in the expression of pro-apoptotic genes such as BAX, CASP3, CASP7 and APAF1. Furthermore, RTqPCR analysis indicated an increased expression of the anti-apoptotic gene BCL2 in a dose-dependent manner. In addition, to confirm the role of reactive oxygen species in the proliferation inhibition, DCFH-DA-based analysis was carried out, where a dose-dependent increase in ROS levels was observed in these cells. Overall, the study confirms the anticancer efficacy of A. tetracantha leaf methanol extract mediated through the induction of redox imbalance and cytochrome c release.


2021 ◽  
Vol 14 (12) ◽  
pp. 1310
Author(s):  
Meng-Hsun Yu ◽  
Ming-Chang Tsai ◽  
Chi-Chih Wang ◽  
Sheng-Wen Wu ◽  
Ya-Ju Chang ◽  
...  

The edible leaves of the mulberry (Morus alba L.) plant are used worldwide. They contain abundant polyphenolic compounds with strong anticancer properties. We previously revealed that apoptosis was mediated in p53-negative Hep3B cells, and mulberry leaf polyphenol extract (MLPE) induced autophagy in p53-transfected Hep3B cells. However, how this autophagy is induced by p53 in human hepatoma HepG2 (p53 wild type) cells remains unclear. In the current study, MLPE induced autophagy, as demonstrated by enhanced acidic vesicular organelle staining, by upregulating beclin-1, increasing LC3-II conversion, and phosphorylating AMPK. In HepG2 cells, these processes were associated with p53. Western blot also revealed phosphatidylinositol-3 kinase (PI3K), p-AKT, and fatty acid synthase (FASN) suppression in MLPE-treated cells. Moreover, treatment with the p53 inhibitor pifithrin-α (PFT-α) inhibited autophagy and increased apoptotic response in MLPE-treated HepG2 cells. PFT-α treatment also reversed MLPE-induced PI3K, p-AKT, and FASN suppression. Thus, co-treatment with MLPE and PFT-α significantly increased caspase-3, caspase-8, and cytochrome c release, indicating that p53 deficiency caused the apoptosis. In addition, rutin, a bioactive polyphenol in MLPE, may affect autophagy in HepG2 cells. This study demonstrates that MLPE is a potential anticancer agent targeting autophagy and apoptosis in cells with p53 status. Moreover, this work provides insight into the mechanism of p53 action in MLPE-induced cytotoxicity in hepatocellular carcinoma.


2021 ◽  
Vol 22 (24) ◽  
pp. 13462
Author(s):  
Irene Rodríguez ◽  
Ester Saavedra ◽  
Henoc del Rosario ◽  
Juan Perdomo ◽  
José Quintana ◽  
...  

The World Health Organization reported that approximately 324,000 new cases of melanoma skin cancer were diagnosed worldwide in 2020. The incidence of melanoma has been increasing over the past decades. Targeting apoptotic pathways is a potential therapeutic strategy in the transition to preclinical models and clinical trials. Some naturally occurring products and synthetic derivatives are apoptosis inducers and may represent a realistic option in the fight against the disease. Thus, chalcones have received considerable attention due to their potential cytotoxicity against cancer cells. We have previously reported a chalcone containing an indole and a pyridine heterocyclic rings and an α-bromoacryloylamido radical which displays potent antiproliferative activity against several tumor cell lines. In this study, we report that this chalcone is a potent apoptotic inducer for human melanoma cell lines SK-MEL-1 and MEL-HO. Cell death was associated with mitochondrial cytochrome c release and poly(ADP-ribose) polymerase cleavage and was prevented by a non-specific caspase inhibitor. Using SK-MEL-1 as a model, we found that the mechanism of cell death involves (i) the generation of reactive oxygen species, (ii) activation of the extrinsic and intrinsic apoptotic and mitogen-activated protein kinase pathways, (iii) upregulation of TRAIL, DR4 and DR5, (iv) downregulation of p21Cip1/WAF1 and, inhibition of the NF-κB pathway.


2021 ◽  
Vol 22 (24) ◽  
pp. 13368
Author(s):  
Agnieszka Kobylińska ◽  
Małgorzata Maria Posmyk

Recent studies have shown that melatonin is an important molecule in plant physiology. It seems that the most important is that melatonin effectively eliminates oxidative stress (direct and indirect antioxidant) and switches on different defence strategies (preventive and interventive actions) during environmental stresses. In the presented report, exogenous melatonin potential to protect Nicotiana tabacum L. line Bright Yellow 2 (BY-2) exposed to lead against death was examined. Analyses of cell proliferation and viability, the level of intracellular calcium, changes in mitochondrial membrane potential (ΔΨm) as well as possible translocation of cytochrome c from mitochondria to cytosol and subsequent caspase-like proteolytic activity were conducted. Our results indicate that pretreatment BY-2 with melatonin protected tobacco cells against mitochondrial dysfunction and caspase-like activation caused by lead. The findings suggest the possible role of this indoleamine in the molecular mechanism of mitochondria, safeguarding against potential collapse and cytochrome c release. Thus, it seems that applied melatonin acted as an effective factor, promoting survival and increasing plant tolerance to lead.


Author(s):  
Elham Moradi ◽  
Parvaneh Naserzadeh ◽  
Peiman Brouki Millan ◽  
Behnaz Ashtari

Abstract The cytotoxicity of diamond nanoparticles (DNs) to various cell lines has been on focus by numerous scientists. The cellular toxicity system of DNs has not been fully understood or explained in skin cancer, at this point. This research was carried out to discover and reveal the potential impacts of DNs on the secluded brain, heart, liver, kidney, and skin in addition to evaluation of their cytotoxicity mechanism under test conditions. Their biological activities, for example cell viability, the level of reactive oxygen species (ROS), lipid peroxidation, cytochrome c release and Apoptosis/Necrosis were evaluated. Additionally, the bio-distribution of these nanomaterials in tissues was examined in the C57 mouse. Relying on the findings of the investigation, DNs were found to increase the ROS level, MDA content, release of cytochrome c, and cell death in skin significantly compared to other groups. In the C57 mouse, DNs were observed to have accumulated in skin tissue more intensively than they did in other organs. The present study presents for the the proof that DNs can completely induce cell death signaling in skin cancer without bringing about a high cytotoxicity in other tissues. Results suggest that DNs can be valuable in recognition of skin cancer.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Akash Saha ◽  
Suraiya Saleem ◽  
Paidi Ramesh Kumar ◽  
Subhas C. Biswas

AbstractAlzheimer’s disease (AD) is characterized by accumulation of senile amyloid-β (Aβ) plaques and hyperphosphorylated tau tangles causing progressive loss of synapse and neuronal death. Out of the various neuron death modalities, autophagy and apoptosis are reported to be the major death paradigms in AD. However, how these two processes lead to neuronal loss is still inconspicuous. Here we report that under Aβ toxicity, aberrant autophagy is induced with inefficient autophagic flux in neurons. Simultaneous activation of both autophagy and apoptosis are seen in primary cortical neurons as well as in transgenic mice brains. We found that induction of autophagy by rapamycin is detrimental for neurons; whereas downregulation of Beclin1, an important autophagy inducing protein, provides significant protection in Aβ treated neuronal cells by blocking cytochrome-c release from the mitochondria. We further report that downregulation of Puma, a BH3-only pro-apoptotic protein, inhibits the induction of aberrant autophagy and also ameliorates the autophagy flux under the influence of Aβ. Notably, stereotactic administration of shRNAs against Puma and Beclin1 in adult Aβ-infused rat brains inhibits both apoptotic and autophagic pathways. The regulation of both of the death processes is brought about by the direct interaction between Puma and Beclin1 upon Aβ treatment. We conclude that both Beclin1 and Puma play essential roles in the neuronal death caused by the induction of aberrant autophagy in AD and targeting their interaction could be vital to understand the crosstalk of autophagy and apoptosis as well as to develop a potential therapeutic strategy in AD.


2021 ◽  
Vol 12 ◽  
Author(s):  
Peng Chen ◽  
Fuchao Chen ◽  
Jiexin Lei ◽  
Gaohua Wang ◽  
Benhong Zhou

Background: Despite considerable advances in pharmacotherapy, more effective therapeutic interventions for aging-related neurodegenerative disorders (NDs), such as Alzheimer’s disease (AD), remain limited. Urolithin B (UB), one of the major subcategories of urolithins (microbiota metabolites) found in various tissues after ellagitannin consumption, has been shown to possess antioxidant, anti-inflammatory, and antiapoptotic effects. However, the neuroprotective effect of UB on brain aging in mice and its potential mechanisms were still unknown.Methods: In the current research, we first assessed the ameliorative effects of UB on oxidative injury and apoptosis induced by H2O2 in neuro-2a cells. Then a subcutaneous injection of D-galactose in mice for 8 weeks was used to establish the aging model to evaluate the protective effects of UB. The capacity of memory and learning, alterations of hippocampus histology and corresponding molecular mechanisms were all evaluated.Results: The D-gal-induced accelerated aging model in vivo demonstrated that UB could significantly ameliorate deficits in learning and memory by inhibiting the accumulation of advanced glycation end products (AGEs) and elevating the expression and activity of Cu, Zn-SOD and CAT. Furthermore, UB downregulated the c-Jun N-terminal kinase (JNK) signaling pathway and prevented cytochrome c release from isolated mitochondria, thereby inhibiting neuronal apoptosis during the aging process. More importantly, UB stimulation of aging mice activated ERK and phosphoinositide 3-kinase (PI3K), leading to neuronal survival along with Akt and p44/42 mitogen-activated protein kinase (MAPK) phosphorylation and activation.Conclusion: In summary, UB effectively alleviated cognitive deficits and ameliorated brain aging-related conditions and could be considered a healthcare product to prevent aging-associated NDs such as AD.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5608
Author(s):  
Sylvain Garciaz ◽  
Colombe Saillard ◽  
Yosr Hicheri ◽  
Marie-Anne Hospital ◽  
Norbert Vey

Venetoclax is a BH3-mimetics agent specifically interacting with the antiapoptotic protein BCL-2, facilitating cytochrome c release from mitochondria, subsequent caspases activation, and cell death. Utilization of venetoclax has profoundly changed the landscape of treatment for the poor-prognosis category of AML patients unfit for intensive chemotherapy. In the phase III VIALE-A study, Venetoclax, in combination with the hypomethylating agent azacitidine, showed a 65% overall response rate and 14.7-month overall survival, in comparison with 22% and 8 months in the control arm. These results led to the widespread use of venetoclax in this indication. Other combination regimens, consisting of low-intensity, intensive, or targeted therapies are currently under evaluation. Despite promising results, preventing relapses or resistance to venetoclax is still an unmet clinical need. Numerous studies have been conducted to identify and overcome venetoclax resistance in preclinical models or in clinical trials, including the inhibition of other antiapoptotic proteins, the induction of proapoptotic BH3-only proteins, and/or the targeting of the mitochondrial metabolism and machinery.


2021 ◽  
Vol 22 (21) ◽  
pp. 11729
Author(s):  
Cheol Park ◽  
Seon Yeong Ji ◽  
Hyesook Lee ◽  
Sung Hyun Choi ◽  
Chan-Young Kwon ◽  
...  

Mori Ramulus, the dried twigs of Morus alba L., has been attracting attention for its potent antioxidant activity, but its role in muscle cells has not yet been elucidated. The purpose of this study was to evaluate the protective effect of aqueous extracts of Mori Ramulus (AEMR) against oxidative stress caused by hydrogen peroxide (H2O2) in C2C12 mouse myoblasts, and in dexamethasone (DEX)-induced muscle atrophied models. Our results showed that AEMR rescued H2O2-induced cell viability loss and the collapse of the mitochondria membrane potential. AEMR was also able to activate AMP-activated protein kinase (AMPK) in H2O2-treated C2C12 cells, whereas compound C, a pharmacological inhibitor of AMPK, blocked the protective effects of AEMR. In addition, H2O2-triggered DNA damage was markedly attenuated in the presence of AEMR, which was associated with the inhibition of reactive oxygen species (ROS) generation. Further studies showed that AEMR inhibited cytochrome c release from mitochondria into the cytoplasm, and Bcl-2 suppression and Bax activation induced by H2O2. Furthermore, AEMR diminished H2O2-induced activation of caspase-3, which was associated with the ability of AEMR to block the degradation of poly (ADP-ribose) polymerase, thereby attenuating H2O2-induced apoptosis. However, compound C greatly abolished the protective effect of AEMR against H2O2-induced C2C12 cell apoptosis, including the restoration of mitochondrial dysfunction. Taken together, these results demonstrate that AEMR could protect C2C12 myoblasts from oxidative damage by maintaining mitochondrial function while eliminating ROS, at least with activation of the AMPK signaling pathway. In addition, oral administration of AEMR alleviated gastrocnemius and soleus muscle loss in DEX-induced muscle atrophied rats. Our findings support that AEMR might be a promising therapeutic candidate for treating oxidative stress-mediated myoblast injury and muscle atrophy.


Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 599
Author(s):  
Shiqing Jiang ◽  
E Zhang ◽  
Hang Ruan ◽  
Jiahui Ma ◽  
Xingming Zhao ◽  
...  

Actinomycin (Act) V, an analogue of Act D, presented stronger antitumor activity and less hepatorenal toxicity than Act D in our previous studies, which is worthy of further investigation. We hereby report that Act V induces apoptosis via mitochondrial and PI3K/AKT pathways in colorectal cancer (CRC) cells. Act V-induced apoptosis was characterized by mitochondrial dysfunction, with loss of mitochondria membrane potential (MMP) and cytochrome c release, which then activated cleaved caspase-9, cleaved caspase-3, and cleaved PARP, revealing that it was related to the mitochondrial pathway, and the apoptotic trendency can be reversed by caspase inhibitor Z-VAD-FMK. Furthermore, we proved that Act V significantly inhibited PI3K/AKT signalling in HCT-116 cells using cell experiments in vitro, and it also presented a potential targeted PI3Kα inhibition using computer docking models. Further elucidation revealed that it exhibited a 28-fold greater potency than the PI3K inhibitor LY294002 on PI3K inhibition efficacy. Taken together, Act V, as a superior potential replacement of Act D, is a potential candidate for inhibiting the PI3K/AKT pathway and is worthy of more pre-clinical studies in the therapy of CRC.


Sign in / Sign up

Export Citation Format

Share Document