The time course of brain and blood catecholamines, catechol O-methyltransferase, and amino acids in rats convulsed by oxygen at high pressure

1979 ◽  
Vol 57 (4) ◽  
pp. 390-395 ◽  
Author(s):  
E. W. Banister ◽  
A. K. Singh

The time course of changes in blood and brain catecholamines, catechol (O-methyltransferase (COMT), ammonia, and amino acids leading to convulsion by high pressure oxygen breathing (OHP) in rats has been investigated. Brain catecholamines were suppressed by OHP. They changed in phase with brain COMT concentration and consequently were not due to the action of this degrading enzyme. Convulsive actions seem not to be influenced by brain catecholamine concentration. Blood adrenaline concentrations are, however, significantly elevated both prior to and during convulsions. In both brain and blood, ammonia concentration increases, glutamate decreases, and glutamine–aspargine increases. It is proposed that the efficacy of the glutamate–glutamine ammonia buffering system in blood and brain is important in the prevention of the onset of convulsions but that when brain γ-aminobutyric acid is depressed to critical levels, convulsions result.

1980 ◽  
Vol 58 (3) ◽  
pp. 237-242 ◽  
Author(s):  
E. W. Banister ◽  
A. K. Singh

Hexamethonium infusion (intravenous) does not alter the concentrations of brain catecholamines, ammonia, and amino acids in rats under normal conditions. However, it decreases the concentration of blood adrenaline (A) and nonadrenaline (NA) significantly without affecting blood ammonia and amino acids. Injection of α-methyl-p-tyrosine (α-MPT) (intraperitoneal) decreases brain catecholamines without affecting the concentration of ammonia and amino acids in the brain or catecholamines, ammonia, and amino acids in the blood.In normal, hexamethonium-, and α-MFT-treated rats convulsed by exposure to oxygen at high pressure (OHP), the concentration of ammonia and glutamine plus aspargine increased and glutamate and γ-aminobutyric acid (GABA) (brain only) decreased significantly in both blood and brain. After convulsion, hexamethonium and α-MPT effect the same degree of concentration change for ammonia and amino acids in both blood and brain.When hexamethonium-treated rats are convulsed by OHP, the concentrations of A and NA in blood increased significantly. However, the postconvulsive concentration of A in these rats is significantly less than the preconvulsive control values of normal, undrugged rats. Hexamethonium also prolongs the latency period before convulsions induced by exposure of rats to OHP. This protective action of hexamethonium against oxygen toxicity is probably due to (a) some direct effect of low circulating catecholamines, or (b) delay in the production of toxic levels of ammonia from oxidative deamination of catecholamines, as initial low catecholamine concentration would hinder accumulation of ammonia from such deamination.α-MPT treatment was ineffective in producing an increased latency period before convulsion occurred despite the prevailing low brain catecholamine initially produced by α-MPT treatment. However, the concentration of brain A, NA, and total catecholamines decreased significantly after α-MPT-treated rats were convulsed by OHP exposure. The response of blood catecholamines to OHP-induced convulsions in these α-MPT-treated rats is the same as in normal rats.As α-MPT blocks the synthesis of catecholamines, a further decrease in brain catecholamine values after oxygen-induced convulsions in drugged animals suggests that brain catecholamines are oxidatively deaminated to produce ammonia. These observations suggest that, contrary to earlier reports, brain catecholamines do play an important role in producing ammonia during oxygen toxicity, which, in turn, induces convulsions.


1979 ◽  
Vol 57 (7) ◽  
pp. 688-694 ◽  
Author(s):  
A. K. Singh ◽  
E. W. Banister

Adrenalectomized rats exposed to high pressure oxygen (OHP) until convulsion convulse much later than sham-operated or normal rats. No significant changes in the concentration of noradrenaline (NA) and total catecholamines (TC) in the brain were noted in sham-operated or adrenalectomized rats resulting from sham or real surgery and no change occurred in these variables in normal sham-operated or adrenalectomized animals after OHP leading to convulsion. Brain adrenaline (A) concentration, however, decreased significantly in all three groups following OHP-induced convulsions. Activity of catecholamine O-methyltransferase (COMT) decreased significantly only in adrenalectomized rats. Brain γ-aminobutyric acid (GABA), glutamate, and other amino acid level remained unchanged after adrenalectomy whereas the concentration of ammonia decreased significantly when normal rats were adrenalectomized. After OHP-induced convulsions, the concentrations of brain GABA and glutamate decreased and ammonia and glutamine plus asparagine increased significantly in normal, sham-operated, and adrenalectomized rats. In the blood no significant difference was noted in the concentration of the catecholamines, ammonia, and amino acids either in normal or sham-operated rats. In adrenalectomized rats, the blood A and NA concentrations decreased significantly and tyrosine increased significantly. The concentration of NA, ammonia, and glutamine plus asparagine in rats from all three groups increased after OHP-induced convulsions, whereas the concentration of glutamate decreased significantly. Since the concentration of A increased significantly after convulsions in normal and sham-operated rats but did not change in adrenalectomized rats, it might be proposed that adrenalectomy protects against OHP-induced convulsions by reducing the circulating concentration of A and ammonia.However, these are not the only factors involved in the protection since the sham-operated rats also convulsed much later than normal rats but had similar ammonia and A concentrations to normal animals.


Author(s):  
Brian Drouin ◽  
Jiajun Hoo ◽  
V. Devi ◽  
D. Benner ◽  
David Robichaud ◽  
...  

2001 ◽  
Author(s):  
B. Vyskubenko ◽  
A. Adamenkov ◽  
S. Ilyin ◽  
Yu. Kolobyanin ◽  
I. Krukovsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document