Mechanical and electronic properties of perovskite hydrides LiCaH$$_{\mathrm {{3}}}$$ and NaCaH$$_{\mathrm {{3}}}$$ for hydrogen storage applications

2021 ◽  
Vol 94 (9) ◽  
Author(s):  
Selgin Al
2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Vikas Nayak ◽  
Suman Banger ◽  
U. P. Verma

The quantum mechanical calculations based on density functional theory (DFT) have been performed to study ground state structural and electronic properties of BeH2 and along with doping of two (BeH2 + 2H) and four (BeH2 + 4H) hydrogen atoms. The generalized gradient approximation (GGA) has been employed for the exchange correlation energy. The most stable space group of BeH2 is Ibam. Its optimized equilibrium unit cell volume, bulk modulus and its first-order pressure derivative, and electronic properties have been obtained. Our predicted unit cell parameters for BeH2  a=9.2463 Å, b=4.2352 Å, and c=7.8464 Å are in very good agreement with the earlier reported experimental and theoretical results. The electronic band structure of BeH2 shows its behavior as an insulator. The stability of BeH2 along with doped hydrogen atoms increases, while the energy band gap decreases with the increase in number of doped hydrogen atoms. On these bases, we predict that BeH2 is a promising material for hydrogen storage.


2018 ◽  
Vol 32 (20) ◽  
pp. 1850209
Author(s):  
Zhicheng Yu ◽  
Xiurong Zhang ◽  
Kun Gao ◽  
Peiying Huo

Geometric and electronic structures of W[Formula: see text]Cu[Formula: see text]H2 (m + n [Formula: see text] 7) clusters have been systematically calculated by density functional theory (DFT) at the generalized gradient approximation (GGA) level for ground-state structures. For all W–Cu clusters, H atoms prefer to attach to W atoms in this system during adsorption. And more electrons transfer from H atom to W atom with the growth of the size of the cluster which benefits the hydrogen storage. Analysis of stability properties and electronic properties shows that hydrogen adsorption and dissociation process take place more efficiently at the W2Cu3H2 cluster than the others. Due to high thermodynamic stability and adsorption energy of W5CuH2 cluster among W[Formula: see text]Cu[Formula: see text]H2 (m + n [Formula: see text] 7) clusters, W5Cu is more suitable for hydrogen storage.


Sign in / Sign up

Export Citation Format

Share Document