Notes on Forcing Axioms

10.1142/9013 ◽  
2013 ◽  
Author(s):  
Stevo Todorcevic ◽  
Chitat Chong ◽  
Qi Feng ◽  
Theodore A Slaman ◽  
W Hugh Woodin ◽  
...  
Keyword(s):  
2004 ◽  
Vol 69 (1) ◽  
pp. 73-80 ◽  
Author(s):  
Sy D. Friedman

In this article we study the strength of absoluteness (with real parameters) in various types of generic extensions, correcting and improving some results from [3]. (In particular, see Theorem 3 below.) We shall also make some comments relating this work to the bounded forcing axioms BMM, BPFA and BSPFA.The statement “ absoluteness holds for ccc forcing” means that if a formula with real parameters has a solution in a ccc set-forcing extension of the universe V, then it already has a solution in V. The analogous definition applies when ccc is replaced by other set-forcing notions, or by class-forcing.Theorem 1. [1] absoluteness for ccc has no strength; i.e., if ZFC is consistent then so is ZFC + absoluteness for ccc.The following results concerning (arbitrary) set-forcing and class-forcing can be found in [3].Theorem 2 (Feng-Magidor-Woodin). (a) absoluteness for arbitrary set-forcing is equiconsistent with the existence of a reflecting cardinal, i.e., a regular cardinal κ such that H(κ) is ∑2-elementary in V.(b) absoluteness for class-forcing is inconsistent.We consider next the following set-forcing notions, which lie strictly between ccc and arbitrary set-forcing: proper, semiproper, stationary-preserving and ω1-preserving. We refer the reader to [8] for the definitions of these forcing notions.Using a variant of an argument due to Goldstern-Shelah (see [6]), we show the following. This result corrects Theorem 2 of [3] (whose proof only shows that if absoluteness holds in a certain proper forcing extension, then in L either ω1 is Mahlo or ω2 is inaccessible).


2002 ◽  
Vol 8 (1) ◽  
pp. 91
Author(s):  
Paul B. Larson ◽  
W. Hugh Woodin

1996 ◽  
Vol 80 (2) ◽  
pp. 139-163 ◽  
Author(s):  
Charles Morgan
Keyword(s):  

Set Theory ◽  
1998 ◽  
pp. 1-21
Author(s):  
Maxim R. Burke
Keyword(s):  

2010 ◽  
pp. 328-360
Author(s):  
Boban Veličković

2018 ◽  
Vol 83 (1) ◽  
pp. 283-325 ◽  
Author(s):  
GUNTER FUCHS

AbstractI analyze the hierarchies of the bounded resurrection axioms and their “virtual” versions, the virtual bounded resurrection axioms, for several classes of forcings (the emphasis being on the subcomplete forcings). I analyze these axioms in terms of implications and consistency strengths. For the virtual hierarchies, I provide level-by-level equiconsistencies with an appropriate hierarchy of virtual partially super-extendible cardinals. I show that the boldface resurrection axioms for subcomplete or countably closed forcing imply the failure of Todorčević’s square at the appropriate level. I also establish connections between these hierarchies and the hierarchies of bounded and weak bounded forcing axioms.


2015 ◽  
Vol 80 (2) ◽  
pp. 587-608 ◽  
Author(s):  
KONSTANTINOS TSAPROUNIS

AbstractThe resurrection axioms are forms of forcing axioms that were introduced recently by Hamkins and Johnstone, who developed on earlier ideas of Chalons and Veličković. In this note, we introduce a stronger form of resurrection (which we callunboundedresurrection) and show that it gives rise to families of axioms which are consistent relative to extendible cardinals, and which imply the strongest known instances of forcing axioms, such as Martin’s Maximum++. In addition, we study the unbounded resurrection postulates in terms of consistency lower bounds, obtaining, for example, failures of the weak square principle.


1983 ◽  
Vol 48 (4) ◽  
pp. 1046-1052 ◽  
Author(s):  
Dan Velleman

It is well known that many statements provable from combinatorial principles true in the constructible universe L can also be shown to be consistent with ZFC by forcing. Recent work by Shelah and Stanley [4] and the author [5] has clarified the relationship between the axiom of constructibility and forcing by providing Martin's Axiom-type forcing axioms equivalent to ◊ and the existence of morasses. In this paper we continue this line of research by providing a forcing axiom equivalent to □κ. The forcing axiom generalizes easily to inaccessible, non-Mahlo cardinals, and provides the motivation for a corresponding generalization of □κ.In order to state our forcing axiom, we will need to define a strategic closure condition for partial orders. Suppose P = 〈P, ≤〉 is a partial order. For each ordinal α we will consider a game played by two players, Good and Bad. The players choose, in order, the terms in a descending sequence of conditions 〈pβ∣β < α〉 Good chooses all terms pβ for limit β, and Bad chooses all the others. Bad wins if for some limit β<α, Good is unable to move at stage β because 〈pγ∣γ < β〉 has no lower bound. Otherwise, Good wins. Of course, we will be rooting for Good.


Sign in / Sign up

Export Citation Format

Share Document