generic absoluteness
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 0)



2020 ◽  
pp. 1-11
Author(s):  
William Chan

Abstract A set $U \subseteq {\mathbb {R}} \times {\mathbb {R}}$ is universal for countable subsets of ${\mathbb {R}}$ if and only if for all $x \in {\mathbb {R}}$ , the section $U_x = \{y \in {\mathbb {R}} : U(x,y)\}$ is countable and for all countable sets $A \subseteq {\mathbb {R}}$ , there is an $x \in {\mathbb {R}}$ so that $U_x = A$ . Define the equivalence relation $E_U$ on ${\mathbb {R}}$ by $x_0 \ E_U \ x_1$ if and only if $U_{x_0} = U_{x_1}$ , which is the equivalence of codes for countable sets of reals according to U. The Friedman–Stanley jump, $=^+$ , of the equality relation takes the form $E_{U^*}$ where $U^*$ is the most natural Borel set that is universal for countable sets. The main result is that $=^+$ and $E_U$ for any U that is Borel and universal for countable sets are equivalent up to Borel bireducibility. For all U that are Borel and universal for countable sets, $E_U$ is Borel bireducible to $=^+$ . If one assumes a particular instance of $\mathbf {\Sigma }_3^1$ -generic absoluteness, then for all $U \subseteq {\mathbb {R}} \times {\mathbb {R}}$ that are $\mathbf {\Sigma }_1^1$ (continuous images of Borel sets) and universal for countable sets, there is a Borel reduction of $=^+$ into $E_U$ .



2020 ◽  
pp. 1-25
Author(s):  
DAVID ASPERÓ ◽  
ASAF KARAGILA

Abstract We show that Dependent Choice is a sufficient choice principle for developing the basic theory of proper forcing, and for deriving generic absoluteness for the Chang model in the presence of large cardinals, even with respect to $\mathsf {DC}$ -preserving symmetric submodels of forcing extensions. Hence, $\mathsf {ZF}+\mathsf {DC}$ not only provides the right framework for developing classical analysis, but is also the right base theory over which to safeguard truth in analysis from the independence phenomenon in the presence of large cardinals. We also investigate some basic consequences of the Proper Forcing Axiom in $\mathsf {ZF}$ , and formulate a natural question about the generic absoluteness of the Proper Forcing Axiom in $\mathsf {ZF}+\mathsf {DC}$ and $\mathsf {ZFC}$ . Our results confirm $\mathsf {ZF} + \mathsf {DC}$ as a natural foundation for a significant portion of “classical mathematics” and provide support to the idea of this theory being also a natural foundation for a large part of set theory.



2018 ◽  
Vol 83 (3) ◽  
pp. 1282-1305 ◽  
Author(s):  
GUNTER FUCHS ◽  
KAETHE MINDEN

AbstractWe investigate properties of trees of height ω1 and their preservation under subcomplete forcing. We show that subcomplete forcing cannot add a new branch to an ω1-tree. We introduce fragments of subcompleteness which are preserved by subcomplete forcing, and use these in order to show that certain strong forms of rigidity of Suslin trees are preserved by subcomplete forcing. Finally, we explore under what circumstances subcomplete forcing preserves Aronszajn trees of height and width ω1. We show that this is the case if CH fails, and if CH holds, then this is the case iff the bounded subcomplete forcing axiom holds. Finally, we explore the relationships between bounded forcing axioms, preservation of Aronszajn trees of height and width ω1 and generic absoluteness of ${\rm{\Sigma }}_1^1$-statements over first order structures of size ω1, also for other canonical classes of forcing.



2018 ◽  
Vol 83 (2) ◽  
pp. 572-597 ◽  
Author(s):  
ITAY NEEMAN ◽  
ZACH NORWOOD

AbstractWe prove that, in the choiceless Solovay model, every set of reals isH-Ramsey for every happy familyHthat also belongs to the Solovay model. This gives a new proof of Törnquist’s recent theorem that there are no infinite mad families in the Solovay model. We also investigate happy families and mad families under determinacy, applying a generic absoluteness result to prove that there are no infinite mad families under$A{D^ + }$.



2017 ◽  
Vol 82 (4) ◽  
pp. 1229-1251
Author(s):  
TREVOR M. WILSON

AbstractWe prove several equivalences and relative consistency results regarding generic absoluteness beyond Woodin’s ${\left( {{\bf{\Sigma }}_1^2} \right)^{{\rm{u}}{{\rm{B}}_\lambda }}}$ generic absoluteness result for a limit of Woodin cardinals λ. In particular, we prove that two-step $\exists ^ℝ \left( {{\rm{\Pi }}_1^2 } \right)^{{\rm{uB}}_\lambda } $ generic absoluteness below a measurable limit of Woodin cardinals has high consistency strength and is equivalent, modulo small forcing, to the existence of trees for ${\left( {{\bf{\Pi }}_1^2} \right)^{{\rm{u}}{{\rm{B}}_\lambda }}}$ formulas. The construction of these trees uses a general method for building an absolute complement for a given tree T assuming many “failures of covering” for the models $L\left( {T,{V_\alpha }} \right)$ for α below a measurable cardinal.



2017 ◽  
Vol 17 (02) ◽  
pp. 1750005 ◽  
Author(s):  
Giorgio Audrito ◽  
Matteo Viale

The resurrection axioms are forcing axioms introduced recently by Hamkins and Johnstone, developing on ideas of Chalons and Veličković. We introduce a stronger form of resurrection axioms (the iterated resurrection axioms [Formula: see text] for a class of forcings [Formula: see text] and a given ordinal [Formula: see text]), and show that [Formula: see text] implies generic absoluteness for the first-order theory of [Formula: see text] with respect to forcings in [Formula: see text] preserving the axiom, where [Formula: see text] is a cardinal which depends on [Formula: see text] ([Formula: see text] if [Formula: see text] is any among the classes of countably closed, proper, semiproper, stationary set preserving forcings). We also prove that the consistency strength of these axioms is below that of a Mahlo cardinal for most forcing classes, and below that of a stationary limit of supercompact cardinals for the class of stationary set preserving posets. Moreover, we outline that simultaneous generic absoluteness for [Formula: see text] with respect to [Formula: see text] and for [Formula: see text] with respect to [Formula: see text] with [Formula: see text] is in principle possible, and we present several natural models of the Morse–Kelley set theory where this phenomenon occurs (even for all [Formula: see text] simultaneously). Finally, we compare the iterated resurrection axioms (and the generic absoluteness results we can draw from them) with a variety of other forcing axioms, and also with the generic absoluteness results by Woodin and the second author.



2017 ◽  
Vol 10 (3) ◽  
pp. 293-319 ◽  
Author(s):  
Andrea Vaccaro ◽  
Matteo Viale


2017 ◽  
pp. 28-47 ◽  
Author(s):  
Joan Bagaria
Keyword(s):  




Sign in / Sign up

Export Citation Format

Share Document