MAXWELL FIELD: U(1) GAUGE THEORY

1992 ◽  
pp. 47-60
Keyword(s):  
1998 ◽  
Vol 13 (05) ◽  
pp. 765-778 ◽  
Author(s):  
A. S. VYTHEESWARAN

We show that the Abelian Proca model, which is gauge noninvariant with second class constraints can be converted into gauge theories with first class constraints. The method used, which we call gauge unfixing, employs a projection operator defined in the original phase space. This operator can be constructed in more than one way and so we get more than one gauge theory. Two such gauge theories are the Stückelberg theory and the theory of Maxwell field interacting with an antisymmetric tensor field. We also show that the application of the projection operator does not affect the Lorentz invariance of this model.


Author(s):  
John Iliopoulos

All ingredients of the previous chapters are combined in order to build a gauge invariant theory of the interactions among the elementary particles. We start with a unified model of the weak and the electromagnetic interactions. The gauge symmetry is spontaneously broken through the BEH mechanism and we identify the resulting BEH boson. Then we describe the theory known as quantum chromodynamics (QCD), a gauge theory of the strong interactions. We present the property of confinement which explains why the quarks and the gluons cannot be extracted out of the protons and neutrons to form free particles. The last section contains a comparison of the theoretical predictions based on this theory with the experimental results. The agreement between theory and experiment is spectacular.


This volume contains lectures delivered at the Les Houches Summer School ‘Integrability: from statistical systems to gauge theory’ held in June 2016. The School was focussed on applications of integrability to supersymmetric gauge and string theory, a subject of high and increasing interest in the mathematical and theoretical physics communities over the past decade. Relevant background material was also covered, with lecture series introducing the main concepts and techniques relevant to modern approaches to integrability, conformal field theory, scattering amplitudes, and gauge/string duality. The book will be useful not only to those working directly on integrablility in string and guage theories, but also to researchers in related areas of condensed matter physics and statistical mechanics.


Sign in / Sign up

Export Citation Format

Share Document