MULTIPLE POLYLOGARITHMS: ANALYTIC CONTINUATION, MONODROMY, AND VARIATIONS OF MIXED HODGE STRUCTURES

Author(s):  
Jianqiang Zhao
2004 ◽  
Vol 56 (6) ◽  
pp. 1308-1338 ◽  
Author(s):  
Jianqiang Zhao

AbstractIt is well known that multiple polylogarithms give rise to good unipotent variations of mixed Hodge-Tate structures. In this paper we shall explicitly determine these structures related to multiple logarithms and some other multiple polylogarithms of lower weights. The purpose of this explicit construction is to give some important applications. First we study the limit of mixed Hodge-Tate structures and make a conjecture relating the variations of mixed Hodge-Tate structures of multiple logarithms to those of general multiple polylogarithms. Then following Deligne and Beilinson we describe an approach to defining the single-valued real analytic version of the multiple polylogarithms which generalizes the well-known result of Zagier on classical polylogarithms. In the process we find some interesting identities relating single-valued multiple polylogarithms of the same weight k when k = 2 and 3. At the end of this paper, motivated by Zagier's conjecture we pose a problem which relates the special values of multiple Dedekind zeta functions of a number field to the single-valued version of multiple polylogarithms.


2019 ◽  
Vol 2019 (748) ◽  
pp. 1-138
Author(s):  
Alexander B. Goncharov

Abstract Hodge correlators are complex numbers given by certain integrals assigned to a smooth complex curve. We show that they are correlators of a Feynman integral, and describe the real mixed Hodge structure on the pronilpotent completion of the fundamental group of the curve. We introduce motivic correlators, which are elements of the motivic Lie algebra and whose periods are the Hodge correlators. They describe the motivic fundamental group of the curve. We describe variations of real mixed Hodge structures on a variety by certain connections on the product of the variety by twistor plane. We call them twistor connections. In particular, we define the canonical period map on variations of real mixed Hodge structures. We show that the obtained period functions satisfy a simple Maurer–Cartan type non-linear differential equation. Generalizing this, we suggest a DG-enhancement of the subcategory of Saito’s Hodge complexes with smooth cohomology. We show that when the curve varies, the Hodge correlators are the coefficients of the twistor connection describing the corresponding variation of real MHS. Examples of the Hodge correlators include classical and elliptic polylogarithms, and their generalizations. The simplest Hodge correlators on the modular curves are the Rankin–Selberg integrals. Examples of the motivic correlators include Beilinson’s elements in the motivic cohomology, e.g. the ones delivering the Beilinson–Kato Euler system on modular curves.


Hodge Theory ◽  
2014 ◽  
pp. 123-216
Author(s):  
Fouad El Zein ◽  
Lê Dũng Tráng

Sign in / Sign up

Export Citation Format

Share Document