hypersurface singularities
Recently Published Documents


TOTAL DOCUMENTS

154
(FIVE YEARS 23)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Matthew Buican ◽  
Hongliang Jiang

Abstract We systematically study 4D $$ \mathcal{N} $$ N = 2 superconformal field theories (SCFTs) that can be constructed via type IIB string theory on isolated hypersurface singularities (IHSs) embedded in ℂ4. We show that if a theory in this class has no $$ \mathcal{N} $$ N = 2-preserving exactly marginal deformation (i.e., the theory is isolated as an $$ \mathcal{N} $$ N = 2 SCFT), then it has no 1-form symmetry. This situation is somewhat reminiscent of 1-form symmetry and decomposition in 2D quantum field theory. Moreover, our result suggests that, for theories arising from IHSs, 1-form symmetries originate from gauge groups (with vanishing beta functions). One corollary of our discussion is that there is no 1-form symmetry in IHS theories that have all Coulomb branch chiral ring generators of scaling dimension less than two. In terms of the a and c central charges, this condition implies that IHS theories satisfying $$ a<\frac{1}{24}\left(15r+2f\right) $$ a < 1 24 15 r + 2 f and $$ c<\frac{1}{6}\left(3r+f\right) $$ c < 1 6 3 r + f (where r is the complex dimension of the Coulomb branch, and f is the rank of the continuous 0-form flavor symmetry) have no 1-form symmetry. After reviewing the 1-form symmetries of other classes of theories, we are motivated to conjecture that general interacting 4D $$ \mathcal{N} $$ N = 2 SCFTs with all Coulomb branch chiral ring generators of dimension less than two have no 1-form symmetry.


2021 ◽  
Vol 314 (2) ◽  
pp. 311-331
Author(s):  
Naveed Hussain ◽  
Stephen S.-T. Yau ◽  
Huaiqing Zuo

2021 ◽  
pp. 705-748
Author(s):  
Steven Dale Cutkosky ◽  
Hussein Mourtada ◽  
Bernard Teissier

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Cyril Closset ◽  
Simone Giacomelli ◽  
Sakura Schäfer-Nameki ◽  
Yi-Nan Wang

Abstract Canonical threefold singularities in M-theory and Type IIB string theory give rise to superconformal field theories (SCFTs) in 5d and 4d, respectively. In this paper, we study canonical hypersurface singularities whose resolutions contain residual terminal singularities and/or 3-cycles. We focus on a certain class of ‘trinion’ singularities which exhibit these properties. In Type IIB, they give rise to 4d $$ \mathcal{N} $$ N = 2 SCFTs that we call $$ {D}_p^b $$ D p b (G)-trinions, which are marginal gaugings of three SCFTs with G flavor symmetry. In order to understand the 5d physics of these trinion singularities in M-theory, we reduce these 4d and 5d SCFTs to 3d $$ \mathcal{N} $$ N = 4 theories, thus determining the electric and magnetic quivers (or, more generally, quiverines). In M-theory, residual terminal singularities give rise to free sectors of massless hypermultiplets, which often are discretely gauged. These free sectors appear as ‘ugly’ components of the magnetic quiver of the 5d SCFT. The 3-cycles in the crepant resolution also give rise to free hypermultiplets, but their physics is more subtle, and their presence renders the magnetic quiver ‘bad’. We propose a way to redeem the badness of these quivers using a class $$ \mathcal{S} $$ S realization. We also discover new S-dualities between different $$ {D}_p^b $$ D p b (G)-trinions. For instance, a certain E8 gauging of the E8 Minahan-Nemeschansky theory is S-dual to an E8-shaped Lagrangian quiver SCFT.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Michele Del Zotto ◽  
Iñaki García Etxebarria ◽  
Saghar S. Hosseini

Abstract We determine the structure of 1-form symmetries for all 4d $$ \mathcal{N} $$ N = 2 theories that have a geometric engineering in terms of type IIB string theory on isolated hypersurface singularities. This is a large class of models, that includes Argyres-Douglas theories and many others. Despite the lack of known gauge theory descriptions for most such theories, we find that the spectrum of 1-form symmetries can be obtained via a careful analysis of the non-commutative behaviour of RR fluxes at infinity in the IIB setup. The final result admits a very compact field theoretical reformulation in terms of the BPS quiver. We illustrate our methods in detail in the case of the ($$ \mathfrak{g},{\mathfrak{g}}^{\prime } $$ g , g ′ ) Argyres-Douglas theories found by Cecotti-Neitzke-Vafa. In those cases where $$ \mathcal{N} $$ N = 1 gauge theory descriptions have been proposed for theories within this class, we find agreement between the 1-form symmetries of such $$ \mathcal{N} $$ N = 1 Lagrangian flows and those of the actual Argyres-Douglas fixed points, thus giving a consistency check for these proposals.


Sign in / Sign up

Export Citation Format

Share Document