DYNAMICAL SYMMETRY OF INTEGRABLE QUANTUM SYSTEMS

Author(s):  
A. A. BELAVIN
2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Kouhei Fukai ◽  
Yuji Nozawa ◽  
Koji Kawahara ◽  
Tatsuhiko N. Ikeda

2014 ◽  
Vol 92 (4) ◽  
pp. 335-340
Author(s):  
Yan Li ◽  
Fu-Lin Zhang ◽  
Rui-Juan Gu ◽  
Jing-Ling Chen ◽  
L.C. Kwek

An approach to constructing quantum systems with dynamical symmetry is proposed. As examples, we construct generalized systems of the hydrogen atom and harmonic oscillator, which can be regarded as the systems with position-dependent mass. They have symmetries that are similar to the corresponding ones, and can be solved by using the algebraic method. We also exhibit an example of the method applied to the noncentral field.


Author(s):  
Jesko Sirker

These notes are based on a series of three lectures given at the Les Houches summer school on ’Integrability in Atomic and Condensed Matter Physics’ in August 2018. They provide an introduction into the unusual transport properties of integrable models in the linear response regime focussing, in particular, on the spin-1/21/2 XXZ spin chain.


2018 ◽  
Vol 74 (1) ◽  
pp. 43-50 ◽  
Author(s):  
S.A. Bruce ◽  
J.F. Diaz-Valdes

AbstractIt is known that the principle of minimal coupling in quantum mechanics determines a unique interaction form for a charged particle. By properly redefining the canonical commutation relation between (canonical) conjugate components of position and momentum of the particle, e.g. an electron, we restate the Dirac equation for the hydrogen-like atom problem incorporating a generalized minimal electromagnetic coupling. The corresponding interaction keeps the $1/\left|\mathbf{q}\right|$ dependence in both the scalar potential $V\left({\left|\mathbf{q}\right|}\right)$ and the vector potential $\mathbf{A}\left(\mathbf{q}\right)$ ($\left|{\mathbf{A}\left(\mathbf{q}\right)}\right|\sim 1/\left|\mathbf{q}\right|$). This problem turns out to be exactly solvable; moreover, the eigenstates and eigenvalues can be obtained in an elementary fashion. Some feasible models within this approach are discussed. Then we make a few remarks about the breaking of supersymmetry. Finally, we briefly comment on the possible Lie algebra (dynamical symmetry algebra) of these relativistic quantum systems.


Sign in / Sign up

Export Citation Format

Share Document