exactly solvable
Recently Published Documents


TOTAL DOCUMENTS

2014
(FIVE YEARS 182)

H-INDEX

80
(FIVE YEARS 6)

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
S. Suetsugu ◽  
T. Yokoi ◽  
K. Totsuka ◽  
T. Ono ◽  
I. Tanaka ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yuri Minoguchi ◽  
Peter Rabl ◽  
Michael Buchhold

Hybrid evolution protocols, composed of unitary dynamics and repeated, weak or projective measurements, give rise to new, intriguing quantum phenomena, including entanglement phase transitions and unconventional conformal invariance. Defying the complications imposed by the non-linear and stochastic nature of the measurement process, we introduce a scenario of measurement-induced many body evolution, which possesses an exact analytical solution: bosonic Gaussian measurements. The evolution features a competition between the continuous observation of linear boson operators and a free Hamiltonian, and it is characterized by a unique and exactly solvable covariance matrix. Within this framework, we then consider an elementary model for quantum criticality, the free boson conformal field theory, and investigate in which way criticality is modified under measurements. Depending on the measurement protocol, we distinguish three fundamental scenarios (a) enriched quantum criticality, characterized by a logarithmic entanglement growth with a floating prefactor, or the loss of criticality, indicated by an entanglement growth with either (b) an area-law or (c) a volume-law. For each scenario, we discuss the impact of imperfect measurements, which reduce the purity of the wavefunction and are equivalent to Markovian decoherence, and present a set of observables, e.g., real-space correlations, the relaxation time, and the entanglement structure, to classify the measurement-induced dynamics for both pure and mixed states. Finally, we present an experimental tomography scheme, which grants access to the density operator of the system by using the continuous measurement record only.


2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Neil Robinson ◽  
Albertus de Klerk ◽  
Jean-Sébastien Caux

Computing the non-equilibrium dynamics that follows a quantum quench is difficult, even in exactly solvable models. Results are often predicated on the ability to compute overlaps between the initial state and eigenstates of the Hamiltonian that governs time evolution. Except for a handful of known cases, it is generically not possible to find these overlaps analytically. Here we develop a numerical approach to preferentially generate the states with high overlaps for a quantum quench starting from the ground state or an excited state of an initial Hamiltonian. We use these preferentially generated states, in combination with a "high overlap states truncation scheme" and a modification of the numerical renormalization group, to compute non-equilibrium dynamics following a quench in the Lieb-Liniger model. The method is non-perturbative, works for reasonable numbers of particles, and applies to both continuum and lattice systems. It can also be easily extended to more complicated scenarios, including those with integrability breaking.


Author(s):  
Dario Alexander Chisholm ◽  
Guillermo Garcia-Perez ◽  
Matteo A. C. Rossi ◽  
Sabrina Maniscalco ◽  
G.Massimo Massimo Palma

Abstract Understanding the emergence of objectivity from the quantum realm has been a long standing issue strongly related to the quantum to classical crossover. Quantum Darwinism provides an answer, interpreting objectivity as consensus between independent observers. Quantum computers provide an interesting platform for such experimental investigation of quantum Darwinism, fulfilling their initial intended purpose as quantum simulators. Here we assess to what degree current NISQ devices can be used as experimental platforms in the field of quantum Darwinism. We do this by simulating an exactly solvable stochastic collision model, taking advantage of the analytical solution to benchmark the experimental results.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2309
Author(s):  
Alexei D. Kiselev ◽  
Ranim Ali ◽  
Andrei V. Rybin

In this communication we study dynamics of the open quantum bosonic system governed by the generalized Lindblad equation with both dynamical and environment induced intermode couplings taken into account. By using the method of characteristics we deduce the analytical expression for the normally ordered characteristic function. Analytical results for one-point correlation functions describing temporal evolution of the covariance matrix are obtained.


Author(s):  
Satya N Majumdar ◽  
Philippe Mounaix ◽  
Sanjib Sabhapandit ◽  
Gregory Schehr

Abstract We compute exactly the mean number of records $\langle R_N \rangle$ for a time-series of size $N$ whose entries represent the positions of a discrete time random walker on the line with resetting. At each time step, the walker jumps by a length $\eta$ drawn independently from a symmetric and continuous distribution $f(\eta)$ with probability $1-r$ (with $0\leq r < 1$) and with the complementary probability $r$ it resets to its starting point $x=0$. This is an exactly solvable example of a weakly correlated time-series that interpolates between a strongly correlated random walk series (for $r=0$) and an uncorrelated time-series (for $(1-r) \ll 1$). Remarkably, we found that for every fixed $r \in [0,1[$ and any $N$, the mean number of records $\langle R_N \rangle$ is completely universal, i.e., independent of the jump distribution $f(\eta)$. In particular, for large $N$, we show that $\langle R_N \rangle$ grows very slowly with increasing $N$ as $\langle R_N \rangle \approx (1/\sqrt{r})\, \ln N$ for $0<r <1$. We also computed the exact universal crossover scaling functions for $\langle R_N \rangle$ in the two limits $r \to 0$ and $r \to 1$. Our analytical predictions are in excellent agreement with numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document