CRANE SCHEDULING PROBLEMS WITH PRECEDENCE CONSTRAINTS AND THEIR NP-COMPLETENESS

Author(s):  
Jiesheng Wang
1982 ◽  
Vol 14 (3) ◽  
pp. 147-155 ◽  
Author(s):  
R. W. Lieberman ◽  
I. B. Turksen

Algorithms ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 246
Author(s):  
Yuri N. Sotskov ◽  
Еvangelina I. Mihova

This article extends the scheduling problem with dedicated processors, unit-time tasks, and minimizing maximal lateness for integer due dates to the scheduling problem, where along with precedence constraints given on the set of the multiprocessor tasks, a subset of tasks must be processed simultaneously. Contrary to a classical shop-scheduling problem, several processors must fulfill a multiprocessor task. Furthermore, two types of the precedence constraints may be given on the task set . We prove that the extended scheduling problem with integer release times of the jobs to minimize schedule length may be solved as an optimal mixed graph coloring problem that consists of the assignment of a minimal number of colors (positive integers) to the vertices of the mixed graph such that, if two vertices and are joined by the edge , their colors have to be different. Further, if two vertices and are joined by the arc , the color of vertex has to be no greater than the color of vertex . We prove two theorems, which imply that most analytical results proved so far for optimal colorings of the mixed graphs , have analogous results, which are valid for the extended scheduling problems to minimize the schedule length or maximal lateness, and vice versa.


1991 ◽  
Vol 23 (01) ◽  
pp. 86-104 ◽  
Author(s):  
K. D. Glazebrook

A single machine is available to process a collection J of jobs. The machine is free to switch between jobs at any time, but processing must respect a set Γof precedence constraints. Jobs evolve stochastically and earn rewards as they are processed, not otherwise. The theoretical framework of forwards induction/Gittins indexation is used to develop approaches to strategy evaluation for quite general (J,Γ). The performance of both forwards induction strategies and a class of quasi-myopic heuristics is assessed.


2008 ◽  
Vol 17 (01) ◽  
pp. 205-221 ◽  
Author(s):  
ROMAN BARTÁK ◽  
ONDŘEJ ČEPEK

Precedence constraints specify that an activity must finish before another activity starts and hence such constraints play a crucial role in planning and scheduling problems. Many real-life problems also include dependency constraints expressing logical relations between the activities – for example, an activity requires presence of another activity in the plan. For such problems a typical objective is a maximization of the number of activities satisfying the precedence and dependency constraints. In the paper we propose new incremental filtering rules integrating propagation through both precedence and dependency constraints. We also propose a new filtering rule using the information about the requested number of activities in the plan. We demonstrate efficiency of the proposed rules on log-based reconciliation problems and min-cutset problems.


1981 ◽  
Vol 13 (4) ◽  
pp. 304-311 ◽  
Author(s):  
R. W. Lieberman ◽  
I. B. Turksen

1982 ◽  
Vol 14 (3) ◽  
pp. 147-155 ◽  
Author(s):  
R. W. Lieberman ◽  
I. B. Turksen

Sign in / Sign up

Export Citation Format

Share Document