machine scheduling problems
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 43)

H-INDEX

36
(FIVE YEARS 5)

Author(s):  
Bartłomiej Przybylski

AbstractWe consider a number of parallel-machine scheduling problems in which jobs have variable processing times. The actual processing time of each job is described by an arbitrary positive function of the position it holds on a machine. However, the function itself may additionally depend on the job or a machine this job was assigned to. Our aim is to find a schedule that minimizes the objectives of maximum completion time or the total completion time. We present a full set of polynomial solutions for the cases of jobs with no precedence constraints. We also show that the case of single-chained jobs may be not easier in general, but some polynomial results can be obtained, too.


Author(s):  
Gaia Nicosia ◽  
Andrea Pacifici ◽  
Ulrich Pferschy ◽  
Julia Resch ◽  
Giovanni Righini

AbstractThis paper considers single-machine scheduling problems in which a given solution, i.e., an ordered set of jobs, has to be improved as much as possible by re-sequencing the jobs. The need for rescheduling may arise in different contexts, e.g., due to changes in the job data or because of the local objective in a stage of a supply chain that is not aligned with the given sequence. A common production setting entails the movement of jobs (or parts) on a conveyor. This is reflected in our model by facilitating the re-sequencing of jobs via a buffer of limited capacity accessible by a LIFO policy. We consider the classical objective functions of total weighted completion time, maximum lateness and (weighted) number of late jobs and study their complexity. For three of these problems, we present strictly polynomial-time dynamic programming algorithms, while for the case of minimizing the weighted number of late jobs NP-hardness is proven and a pseudo-polynomial algorithm is given.


Author(s):  
Shafi Ahmad ◽  
Zahid Akhtar Khan ◽  
Mohammed Ali ◽  
Mohammad Asjad

<span lang="ES">This work proposes two new prority dispatching rules (PDRs) for solving single machine scheduling problems. These rules are based on the geometric mean (GM) and harmonic mean (HM) of the processing time (PT) and the due date (DD) and they are referred to as GMPD and HMPD respectively. Performance of the proposed PDRs is evaluated on the basis of five measures/criteria i.e. Total Flow Time (TFT), Total Lateness (TL), Number of Late Jobs (TNL), Total Earliness (TE) and Number of Early Parts (TNE). It is found that GMPD performs better than other PDRs in achieving optimal values of multiple performance measures. Further, effect of variation in the weight assigned to PT and DD on the combined performance of TFT and TL is also examined which reveals that for deriving optimal values of TFT and TL, weighted harmonic mean (WHMPD) rule with a weight of 0.105 outperforms other PDRs. The weighted geometric mean (WGMPD) rule with a weight of 0.37 is found to be the next after WHMPD followed by the weighted PDT i.e. WPDT rule with a weight of 0.76.</span>


2021 ◽  
Vol 12 (3) ◽  
pp. 195-211
Author(s):  
Oğuzhan Ahmet Arık ◽  
Mehmet Duran Toksarı

This paper investigates parallel machine scheduling problems where the objectives are to minimize total completion times under effects of learning and deterioration. The investigated problem is in NP-hard class and solution time for finding optimal solution is extremely high. The authors suggested a genetic algorithm, a well-known and strong metaheuristic algorithm, for the problem and we generated some test problems with learning and deterioration effects. The proposed genetic algorithm is compared with another existing metaheuristic for the problem. Experimental results show that the proposed genetic algorithm yield good solutions in very short execution times and outperforms the existing metaheuristic for the problem.


Sign in / Sign up

Export Citation Format

Share Document