crane scheduling
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 49)

H-INDEX

34
(FIVE YEARS 3)

Author(s):  
Lennart Zey ◽  
Dirk Briskorn ◽  
Nils Boysen

AbstractTo enable the efficient division of labor in container yards, many large ports apply twin cranes, two identical automated stacking cranes each dedicated to one of the transfer zones on the seaside and landside. The use of a handshake area, a bay of containers that separates the dedicated areas of the two cranes, is a simple means to avoid crane interference. Inbound containers arriving in the transfer zone of one crane and dedicated to a stacking position of the other crane’s area are placed intermediately in the handshake area by the first crane and then taken over by the second crane, and vice versa for outbound containers. Existing research only evaluates simple heuristics and rule-based approaches for the coordination of twin cranes interconnected by a handshake area. For this setting, accounting for precedence constraints due to stacking containers in the handshake area, we derive exact solution procedures under a makespan minimization objective. In this way, a comprehensive computational evaluation is enabled, which benchmarks heuristics with optimal solutions and additionally compares alternative crane settings (i.e., without workload sharing and cooperation with flexible handover). We further provide insights into where to position the handshake area. Our results reveal that when planning is too simple (i.e., with a rule-based approach), optimality gaps become large, but with sophisticated optimization, the price of a simplified crane coordination via a handshake area is low.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2236
Author(s):  
Hsien-Pin Hsu ◽  
Chia-Nan Wang ◽  
Hsin-Pin Fu ◽  
Thanh-Tuan Dang

The joint scheduling of quay cranes (QCs), yard cranes (YCs), and yard trucks (YTs) is critical to achieving good overall performance for a container terminal. However, there are only a few such integrated studies. Especially, those who have taken the vessel stowage plan (VSP) into consideration are very rare. The VSP is a plan assigning each container a stowage position in a vessel. It affects the QC operations directly and considerably. Neglecting this plan will cause problems when loading/unloading containers into/from a ship or even congest the YT and YC operations in the upstream. In this research, a framework of simulation-based optimization methods have been proposed firstly. Then, four kinds of heuristics/metaheuristics has been employed in this framework, such as sort-by-bay (SBB), genetic algorithm (GA), particle swarm optimization (PSO), and multiple groups particle swarm optimization (MGPSO), to deal with the yard crane scheduling problem (YCSP), yard truck scheduling problem (YTSP), and quay crane scheduling problem (QCSP) simultaneously for export containers, taking operational constraints into consideration. The objective aims to minimize makespan. Each of the simulation-based optimization methods includes three components, load-balancing heuristic, sequencing method, and simulation model. Experiments have been conducted to investigate the effectiveness of different simulation-based optimization methods. The results show that the MGPSO outperforms the others.


2021 ◽  
Vol 26 (3) ◽  
pp. 64
Author(s):  
Ricardo Pérez-Rodríguez

The aim of the quay crane scheduling problem (QCSP) is to identify the best sequence of discharging and loading operations for a set of quay cranes. This problem is solved with a new hybrid estimation of distribution algorithm (EDA). The approach is proposed to tackle the drawbacks of the EDAs, i.e., the lack of diversity of solutions and poor ability of exploitation. The hybridization approach, used in this investigation, uses a distance based ranking model and the moth-flame algorithm. The distance based ranking model is in charge of modelling the solution space distribution, through an exponential function, by measuring the distance between solutions; meanwhile, the heuristic moth-flame determines who would be the offspring, with a spiral function that identifies the new locations for the new solutions. Based on the results, the proposed scheme, called QCEDA, works to enhance the performance of those other EDAs that use complex probability models. The dispersion results of the QCEDA scheme are less than the other algorithms used in the comparison section. This means that the solutions found by the QCEDA are more concentrated around the best value than other algorithms, i.e., the average of the solutions of the QCEDA converges better than other approaches to the best found value. Finally, as a conclusion, the hybrid EDAs have a better performance, or equal in effectiveness, than the so called pure EDAs.


Author(s):  
Abtin Nourmohammadzadeh ◽  
Stefan Voß

AbstractThe ever increasing demand for container transportation has led to the congestion of maritime container terminals in the world. In this work, the two interrelated problems of berth and quay crane scheduling are considered in an integrated multiobjective mathematical model. A special character of this model is that the arrival times of vessels and the failure (working) times of quay cranes are not deterministic and can vary based on some scenarios. Hence, a robust model is devised for the problem having three objectives of minimising the deviations from target berthing locations and times as well as departure delays of all vessels. This robust optimisation seeks to minimise the value of the objectives regarding all the scenarios. An exact solution approach based on the 𝜖-constraint method by the Gurobi software is applied. Moreover, regarding the complexity of the problem, two Simulated Annealing (SA) based metaheuristics, namely a Multi-Objective Simulated Annealing (MOSA) and a Pareto Simulated Annealing (PSA) approach are adapted with a novel solution encoding scheme. The three methods are compared based on some multiobjective metrics and a statistical test. The advantage of the integration of berth and quay crane scheduling is examined as well.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Wenqian Liu ◽  
Xiaoning Zhu ◽  
Li Wang ◽  
Baicheng Yan ◽  
Xuewei Zhang

As the core operational issue in container terminals, yard crane scheduling problem directly affects the overall operation efficiency of port connecting highway or railway transportation and sea transportation. In practice, the scheduling of yard cranes is subject to many uncertain factors, so the scheme may be inapplicable and needs to be adjusted. From the perspective of proactive strategy, considering fluctuations in arrival time of external trucks as well as varied handling volume of yard cranes, a stochastic programming model is established in this paper to obtain a fixed scheme with the minimum expected value of yard crane makespan and total task waiting time over all the scenarios. The scheme does not require rescheduling when facing different situations. Subsequently, two algorithms based on certain rules are proposed to obtain the yard crane operation scheme in the deterministic environment, which are taken as the basic solution in the uncertain conditions, and then a tailored genetic algorithm is adopted to find the optimal solution with good adaptability to the uncertain scenarios. Finally, we use small-scale examples to compare the performance of algorithms in the deterministic and uncertain environment and then analyze the relationship between different yard crane configurations and the number of tasks. Large-scale experiments are performed to study the operation efficiency of the storage yard with different handling volumes assigned to each yard crane.


Sign in / Sign up

Export Citation Format

Share Document