Decadal Change of East Asian Summer Monsoon: Contributions of Internal Variability and External Forcing

Author(s):  
Tianjun Zhou ◽  
Fengfei Song ◽  
Kyung-Ja Ha ◽  
Xiaolong Chen
2015 ◽  
Vol 28 (18) ◽  
pp. 7093-7107 ◽  
Author(s):  
Fengfei Song ◽  
Tianjun Zhou

Abstract This study investigates the role of internal variability in modulating the East Asian summer monsoon (EASM)–ENSO relationship using Twentieth-Century Reanalysis (20CR) data and simulations from phase 5 of CMIP (CMIP5). Analysis of 20CR data reveals an unstable EASM–ENSO relationship during the twentieth century. During the high-correlation periods of 1892–1912 and 1979–99, an evident western Pacific anticyclone (WPAC) and dipole sea level pressure (SLP) pattern are present in the decaying El Niño summer, accompanied by Indian Ocean warming and a tropospheric temperature Matsuno–Gill pattern. However, these are weaker or absent during low-correlation periods (1914–34 and 1958–78). After removing the external forcings based on historical simulations from 15 CMIP5 models, all the above features remain almost unchanged, suggesting the crucial role of internal variability. In a 501-yr preindustrial control (piControl) simulation without external forcing variation from CCSM4, the EASM–ENSO relationship also shows significant decadal variation, with a magnitude comparable to the 20CR data. The analysis demonstrates that the EASM–ENSO relationship’s variation is modulated by the interdecadal Pacific oscillation (IPO). Compared to negative IPO phases, the warmer East China Sea in positive IPO phases weakens the western North Pacific subtropical high (WNPSH), inducing more precipitation. Thus, the Kelvin wave–induced interannual divergence suppresses more mean-state precipitation and leads to a stronger WPAC. Hence, the IPO modulates the EASM–ENSO relationship through the WNPSH, which is evident in both 20CR and the piControl simulation.


2018 ◽  
Vol 136 (1-2) ◽  
pp. 403-415 ◽  
Author(s):  
Jiao Li ◽  
Ruiqiang Ding ◽  
Zhiwei Wu ◽  
Quanjia Zhong ◽  
Baosheng Li ◽  
...  

2021 ◽  
Vol 414 ◽  
pp. 125477
Author(s):  
Xiaohui Wang ◽  
Kai Liu ◽  
Lixin Zhu ◽  
Changjun Li ◽  
Zhangyu Song ◽  
...  

2021 ◽  
Vol 558 ◽  
pp. 116758
Author(s):  
Yanjun Cai ◽  
Xing Cheng ◽  
Le Ma ◽  
Ruixue Mao ◽  
Sebastian F.M. Breitenbach ◽  
...  

2012 ◽  
Vol 25 (20) ◽  
pp. 6975-6988 ◽  
Author(s):  
Jung-Eun Chu ◽  
Saji N. Hameed ◽  
Kyung-Ja Ha

Abstract The hypothesis that regional characteristics of the East Asian summer monsoon (EASM) result from the presence of nonlinear coupled features that modulate the seasonal circulation and rainfall at the intraseasonal time scale is advanced in this study. To examine this hypothesis, the authors undertake the analysis of daily EASM variability using a nonlinear multivariate data classifying algorithm known as self-organizing mapping (SOM). On the basis of various SOM node analyses, four major intraseasonal phases of the EASM are identified. The first node describes a circulation state corresponding to weak tropical and subtropical pressure systems, strong upper-level jets, weakened monsoonal winds, and cyclonic upper-level vorticity. This mode, related to large rainfall anomalies in southeast China and southern Japan, is identified as the mei-yu–baiu phase. The second node represents a distinct circulation state corresponding to a strengthened subtropical high, monsoonal winds, and anticyclonic upper-level vorticity in southeast Korea, which is identified as the changma phase. The third node is related to copious rain over Korea following changma, which we name the postchangma phase. The fourth node is situated diagonally opposite the changma mode. Because Korea experiences a dry spell associated with this SOM node, it is referred to as the dry-spell phase. The authors also demonstrate that a strong modulation of the changma and dry-spell phases on interannual time scales occurs during El Niño and La Niña years. Results imply that the key to predictability of the EASM on interannual time scales may lie with analysis and exploitation of its nonlinear characteristics.


2016 ◽  
Vol 29 (13) ◽  
pp. 5027-5040 ◽  
Author(s):  
Jie Cao ◽  
Shu Gui ◽  
Qin Su ◽  
Yali Yang

Abstract The interannual zonal movement of the interface between the Indian summer monsoon and the East Asian summer monsoon (IIE), associated with the spring sea surface temperature (SST) seesaw mode (SSTSM) over the tropical Indian Ocean (TIO) and the tropical central-western Pacific (TCWP), is studied for the period 1979–2008. The observational analysis is based on Twentieth Century Reanalysis data (version 2) of atmospheric circulations, Extended Reconstructed SST data (version 3), and the Climate Prediction Center Merged Analysis of Precipitation. The results indicate that the IIE’s zonal movement is significantly and persistently correlated with the TIO–TCWP SSTSM, from spring to summer. The results of two case studies resemble those obtained by regression analysis. Experiments using an atmospheric general circulation model (ECHAM6) substantiate the key physical processes revealed in the observational analysis. When warmer (colder) SSTs appear in the TIO and colder (warmer) SSTs occur in the TCWP, the positive (negative) SSTSM forces anomalous easterly (westerly) winds over the Bay of Bengal (BOB), South China Sea (SCS), and western North Pacific (WNP). The anomalous easterly (westerly) winds further result in a weakened (strengthened) southwest summer monsoon over the BOB and a strengthened (weakened) southeast summer monsoon over the SCS and WNP. This causes the IIE to shift farther eastward (westward) than normal.


2010 ◽  
Vol 136 (649) ◽  
pp. 829-841 ◽  
Author(s):  
Xuguang Sun ◽  
Richard J. Greatbatch ◽  
Wonsun Park ◽  
Mojib Latif

Sign in / Sign up

Export Citation Format

Share Document