Quantum mechanics and quantum field theories

2021 ◽  
pp. 7-25
Author(s):  
Roderich Tumulka

One way of obtaining a version of quantum mechanics without observers, and thus of solving the paradoxes of quantum mechanics, is to modify the Schrödinger evolution by implementing spontaneous collapses of the wave function. An explicit model of this kind was proposed in 1986 by Ghirardi, Rimini & Weber (GRW), involving a nonlinear, stochastic evolution of the wave function. We point out how, by focusing on the essential mathematical structure of the GRW model and a clear ontology, it can be generalized to (regularized) quantum field theories in a simple and natural way.


2010 ◽  
Vol 25 (23) ◽  
pp. 4385-4396 ◽  
Author(s):  
GERARD 'T HOOFT

It is pointed out that a mathematical relation exists between cellular automata and quantum field theories. Although the proofs are far from perfect, they do suggest a new look at the origin of quantum mechanics, and an essential role for the gravitational force in these considerations is suspected.


1985 ◽  
Vol 40 (7) ◽  
pp. 752-773
Author(s):  
H. Stumpf

Unified nonlinear spinorfield models are self-regularizing quantum field theories in which all observable (elementary and non-elementary) particles are assumed to be bound states of fermionic preon fields. Due to their large masses the preons themselves are confined and below the threshold of preon production the effective dynamics of the model is only concerned with bound state reactions. In preceding papers a functional energy representation, the statistical interpretation and the dynamical equations were derived and the effective dynamics for preon-antipreon boson states and three preon-fermion states (with corresponding anti-fermions) was studied in the low energy limit. The transformation of the functional energy representation of the spinorfield into composite particle functional operators produced a hierarchy of effective interactions at the composite particle level, the leading terms of which are identical with the functional energy representation of a phenomenological boson-fermion coupling theory. In this paper these calculations are extended into the high energy range. This leads to formfactors for the composite particle interaction terms which are calculated in a rough approximation and which in principle are observable. In addition, the mathematical and physical interpretation of nonlocal quantum field theories and the meaning of the mapping procedure, its relativistic invariance etc. are discussed.


2021 ◽  
Vol 111 (2) ◽  
Author(s):  
Marco Benini ◽  
Marco Perin ◽  
Alexander Schenkel ◽  
Lukas Woike

AbstractThis paper develops a concept of 2-categorical algebraic quantum field theories (2AQFTs) that assign locally presentable linear categories to spacetimes. It is proven that ordinary AQFTs embed as a coreflective full 2-subcategory into the 2-category of 2AQFTs. Examples of 2AQFTs that do not come from ordinary AQFTs via this embedding are constructed by a local gauging construction for finite groups, which admits a physical interpretation in terms of orbifold theories. A categorification of Fredenhagen’s universal algebra is developed and also computed for simple examples of 2AQFTs.


Sign in / Sign up

Export Citation Format

Share Document