2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Maurice A. de Gosson

AbstractWe show that every Gaussian mixed quantum state can be disentangled by conjugation with a passive symplectic transformation, that is a metaplectic operator associated with a symplectic rotation. The main tools we use are the Werner–Wolf condition on covariance matrices and the symplectic covariance of Weyl quantization. Our result therefore complements a recent study by Lami, Serafini, and Adesso.


2020 ◽  
Vol 32 (10) ◽  
pp. 2050030 ◽  
Author(s):  
Fabián Belmonte

We develop a quantization method, that we name decomposable Weyl quantization, which ensures that the constants of motion of a prescribed finite set of Hamiltonians are preserved by the quantization. Our method is based on a structural analogy between the notions of reduction of the classical phase space and diagonalization of selfadjoint operators. We obtain the spectral decomposition of the emerging quantum constants of motion directly from the quantization process. If a specific quantization is given, we expect that it preserves constants of motion exactly when it coincides with decomposable Weyl quantization on the algebra of constants of motion. We obtain a characterization of when such property holds in terms of the Wigner transforms involved. We also explain how our construction can be applied to spectral theory. Moreover, we discuss how our method opens up new perspectives in formal deformation quantization and geometric quantization.


Sign in / Sign up

Export Citation Format

Share Document