Root system of Lie algebras

Keyword(s):  
2017 ◽  
Vol 69 (02) ◽  
pp. 453-480
Author(s):  
Timothée Marquis ◽  
Karl-Hermann Neeb

Abstract The closest infinite-dimensional relatives of compact Lie algebras are Hilbert-Lie algebras, i.e., real Hilbert spaces with a Lie algebra structure for which the scalar product is invariant. Locally affine Lie algebras (LALAs) correspond to double extensions of (twisted) loop algebras over simple Hilbert-Lie algebras , also called affinisations of . They possess a root space decomposition whose corresponding root system is a locally affine root system of one of the 7 families for some infinite set J. To each of these types corresponds a “minimal ” affinisation of some simple Hilbert-Lie algebra , which we call standard. In this paper, we give for each affinisation g of a simple Hilbert-Lie algebra an explicit isomorphism from g to one of the standard affinisations of . The existence of such an isomorphism could also be derived from the classiffication of locally affine root systems, but for representation theoretic purposes it is crucial to obtain it explicitly as a deformation between two twists that is compatible with the root decompositions. We illustrate this by applying our isomorphism theorem to the study of positive energy highest weight representations of g. In subsequent work, this paper will be used to obtain a complete classification of the positive energy highest weight representations of affinisations of .


2018 ◽  
Vol 2020 (16) ◽  
pp. 4942-4992 ◽  
Author(s):  
Cédric Lecouvey ◽  
Cristian Lenart

Abstract We give a purely combinatorial proof of the positivity of the stabilized forms of the generalized exponents associated to each classical root system. In finite type $A_{n-1}$, we rederive the description of the generalized exponents in terms of crystal graphs without using the combinatorics of semistandard tableaux or the charge statistic. In finite type $C_{n}$, we obtain a combinatorial description of the generalized exponents based on the so-called distinguished vertices in crystals of type $A_{2n-1}$, which we also connect to symplectic King tableaux. This gives a combinatorial proof of the positivity of Lusztig $t$-analogs associated to zero-weight spaces in the irreducible representations of symplectic Lie algebras. We also present three applications of our combinatorial formula and discuss some implications to relating two type $C$ branching rules. Our methods are expected to extend to the orthogonal types.


1983 ◽  
Vol 35 (5) ◽  
pp. 898-960 ◽  
Author(s):  
R. V. Moody ◽  
A. Pianzola

In [10] Patera and Sharp conceived a new relation, subjoining, between semisimple Lie algebras. Our objective in this paper is twofold. Firstly, to lay down a mathematical formalization of this concept for arbitrary Lie algebras. Secondly, to give a complete classification of all maximal subjoinings between Lie algebras of the same rank, of which many examples were already known to the above authors.The notion of subjoining is a generalization of the subalgebra relation between Lie algebras. To give an intuitive idea of what is involved we take a simple example. Suppose is a complex simple Lie algebra of type B2. Let be a Cartan subalgebra of and Δ the corresponding root system. We have the standard root diagramInside B2 there lies the subalgebra A1 × A1 which can be identified with the sum of and the root spaces corresponding to the long roots of B2.


2017 ◽  
Vol 69 (4) ◽  
pp. 721-766 ◽  
Author(s):  
Bruce Allison ◽  
John Faulkner ◽  
Oleg Smirnov

AbstractKantor pairs arise naturally in the study of 5-graded Lie algebras. In this article, we introduce and study Kantor pairs with short Peirce gradings and relate themto Lie algebras graded by the root system of type BC2. This relationship allows us to define so-called Weyl images of short Peirce graded Kantor pairs. We use Weyl images to construct new examples of Kantor pairs, including a class of infinite dimensional central simple Kantor pairs over a field of characteristic ≠ 2 or 3, as well as a family of forms of a split Kantor pair of type E6.


2006 ◽  
Vol 58 (2) ◽  
pp. 225-248 ◽  
Author(s):  
Saeid Azam

AbstractWe investigate a class of Lie algebras which we call generalized reductive Lie algebras. These are generalizations of semi-simple, reductive, and affine Kac–Moody Lie algebras. A generalized reductive Lie algebra which has an irreducible root system is said to be irreducible and we note that this class of algebras has been under intensive investigation in recent years. They have also been called extended affine Lie algebras. The larger class of generalized reductive Lie algebras has not been so intensively investigated. We study themin this paper and note that one way they arise is as fixed point subalgebras of finite order automorphisms. We show that the core modulo the center of a generalized reductive Lie algebra is a direct sum of centerless Lie tori. Therefore one can use the results known about the classification of centerless Lie tori to classify the cores modulo centers of generalized reductive Lie algebras.


Sign in / Sign up

Export Citation Format

Share Document