TOPOLOGICAL QUIVERS

2005 ◽  
Vol 16 (07) ◽  
pp. 693-755 ◽  
Author(s):  
PAUL S. MUHLY ◽  
MARK TOMFORDE

Topological quivers are generalizations of directed graphs in which the sets of vertices and edges are locally compact Hausdorff spaces. Associated to such a topological quiver [Formula: see text] is a C*-correspondence, and from this correspondence one may construct a Cuntz–Pimsner algebra [Formula: see text]. In this paper we develop the general theory of topological quiver C*-algebras and show how certain C*-algebras found in the literature may be viewed from this general perspective. In particular, we show that C*-algebras of topological quivers generalize the well-studied class of graph C*-algebras and in analogy with that theory much of the operator algebra structure of [Formula: see text] can be determined from [Formula: see text]. We also show that many fundamental results from the theory of graph C*-algebras have natural analogues in the context of topological quivers (often with more involved proofs). These include the gauge-invariant uniqueness theorem, the Cuntz–Krieger uniqueness theorem, descriptions of the ideal structure, and conditions for simplicity.

2002 ◽  
Vol 66 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Teresa Bates

We give applications of the gauge-invariant uniqueness theorem, which states that the Cuntz-Krieger algebras of directed graphs are characterised by the existence of a canonical action of . We classify the C*-algebras of higher order graphs, identify the C*-algebras of cartesian product graphs with a certain fixed point algebra and investigate a relation called elementary shift equivalence on graphs and its effect on the associated graph C*-algebras.


2020 ◽  
pp. 1-46 ◽  
Author(s):  
SERGEY BEZUGLYI ◽  
ZHUANG NIU ◽  
WEI SUN

We study homeomorphisms of a Cantor set with $k$ ( $k<+\infty$ ) minimal invariant closed (but not open) subsets; we also study crossed product C*-algebras associated to these Cantor systems and certain of their orbit-cut sub-C*-algebras. In the case where $k\geq 2$ , the crossed product C*-algebra is stably finite, has stable rank 2, and has real rank 0 if in addition $(X,\unicode[STIX]{x1D70E})$ is aperiodic. The image of the index map is connected to certain directed graphs arising from the Bratteli–Vershik–Kakutani model of the Cantor system. Using this, it is shown that the ideal of the Bratteli diagram (of the Bratteli–Vershik–Kakutani model) must have at least $k$ vertices at each level, and the image of the index map must consist of infinitesimals.


2020 ◽  
pp. 1-28
Author(s):  
HUI LI ◽  
DILIAN YANG

Let $(G,\unicode[STIX]{x1D6EC})$ be a self-similar $k$ -graph with a possibly infinite vertex set $\unicode[STIX]{x1D6EC}^{0}$ . We associate a universal C*-algebra ${\mathcal{O}}_{G,\unicode[STIX]{x1D6EC}}$ to $(G,\unicode[STIX]{x1D6EC})$ . The main purpose of this paper is to investigate the ideal structures of ${\mathcal{O}}_{G,\unicode[STIX]{x1D6EC}}$ . We prove that there exists a one-to-one correspondence between the set of all $G$ -hereditary and $G$ -saturated subsets of $\unicode[STIX]{x1D6EC}^{0}$ and the set of all gauge-invariant and diagonal-invariant ideals of ${\mathcal{O}}_{G,\unicode[STIX]{x1D6EC}}$ . Under some conditions, we characterize all primitive ideals of ${\mathcal{O}}_{G,\unicode[STIX]{x1D6EC}}$ . Moreover, we describe the Jacobson topology of some concrete examples, which includes the C*-algebra of the product of odometers. On the way to our main results, we study self-similar $P$ -graph C*-algebras in depth.


2012 ◽  
Vol 153 (1) ◽  
pp. 167-191 ◽  
Author(s):  
LISA ORLOFF CLARK ◽  
ASTRID AN HUEF

AbstractLet E be a second-countable, locally compact, Hausdorff groupoid equipped with an action of such that G: = E/ is a principal groupoid with Haar system λ. The twisted groupoid C*-algebra C*(E; G, λ) is a quotient of the C*-algebra of E obtained by completing the space of -equivariant functions on E. We show that C*(E; G, λ) is postliminal if and only if the orbit space of G is T0 and that C*(E; G, λ) is liminal if and only if the orbit space is T1. We also show that C*(E; G, λ) has bounded trace if and only if G is integrable and that C*(E; G, λ) is a Fell algebra if and only if G is Cartan.Let be a second-countable, locally compact, Hausdorff groupoid with Haar system λ and continuously varying, abelian isotropy groups. Let be the isotropy groupoid and : = /. Using the results about twisted groupoid C*-algebras, we show that the C*-algebra C*(, λ) has bounded trace if and only if is integrable and that C*(, λ) is a Fell algebra if and only if is Cartan. We illustrate our theorems with examples of groupoids associated to directed graphs.


2019 ◽  
Vol 170 (5) ◽  
pp. 558-577
Author(s):  
Guram Bezhanishvili ◽  
Nick Bezhanishvili ◽  
Joel Lucero-Bryan ◽  
Jan van Mill

2017 ◽  
Vol 69 (1) ◽  
pp. 21-53 ◽  
Author(s):  
Darij Grinberg

AbstractThe dual immaculate functions are a basis of the ring QSym of quasisymmetric functions and form one of the most natural analogues of the Schur functions. The dual immaculate function corresponding to a composition is a weighted generating function for immaculate tableaux in the same way as a Schur function is for semistandard Young tableaux; an immaculate tableau is defined similarly to a semistandard Young tableau, but the shape is a composition rather than a partition, and only the first column is required to strictly increase (whereas the other columns can be arbitrary, but each row has to weakly increase). Dual immaculate functions were introduced by Berg, Bergeron, Saliola, Serrano, and Zabrocki in arXiv:1208.5191, and have since been found to possess numerous nontrivial properties.In this note, we prove a conjecture of M. Zabrocki that provides an alternative construction for the dual immaculate functions in terms of certain “vertex operators”. The proof uses a dendriform structure on the ring QSym; we discuss the relation of this structure to known dendriformstructures on the combinatorial Hopf algebras FQSym andWQSym.


2020 ◽  
Vol 54 (2) ◽  
pp. 211-219
Author(s):  
S.Yu. Favorov

We show that if points of supports of two discrete ”not very thick” Fourier transformable measures on locally compact abelian (LCA) groups tend to one another at infinity and the same is true for the masses at these points, then these measures coincide. The result is valid for discrete almost periodic measures on LCA groups too. Also, we show that the result is false for some discrete ”thick” measures. To do this, we construct a discrete almost periodic measure on the real axis, whose masses at the points of support tend to zero as these points approach infinity.


Sign in / Sign up

Export Citation Format

Share Document