scholarly journals Applications of the Gauge-invariant uniqueness theorem for graph algebras

2002 ◽  
Vol 66 (1) ◽  
pp. 57-67 ◽  
Author(s):  
Teresa Bates

We give applications of the gauge-invariant uniqueness theorem, which states that the Cuntz-Krieger algebras of directed graphs are characterised by the existence of a canonical action of . We classify the C*-algebras of higher order graphs, identify the C*-algebras of cartesian product graphs with a certain fixed point algebra and investigate a relation called elementary shift equivalence on graphs and its effect on the associated graph C*-algebras.

2014 ◽  
Vol 27 ◽  
Author(s):  
Benham Hashemi ◽  
Mahtab Mirzaei Khalilabadi ◽  
Hanieh Tavakolipour

This paper extends the concept of tropical tensor product defined by Butkovic and Fiedler to general idempotent dioids. Then, it proposes an algorithm in order to solve the fixed-point type Sylvester matrix equations of the form X = A ⊗ X ⊕ X ⊗ B ⊕ C. An application is discussed in efficiently solving the minimum cardinality path problem in Cartesian product graphs.


Author(s):  
David Pask ◽  
Adam Rennie ◽  
Aidan Sims

AbstractThis paper is comprised of two related parts. First we discuss which k-graph algebras have faithful traces. We characterise the existence of a faithful semifinite lower-semicontinuous gauge-invariant trace on C* (Λ) in terms of the existence of a faithful graph trace on Λ.Second, for k-graphs with faithful gauge invariant trace, we construct a smooth (k,∞)-summable semifinite spectral triple. We use the semifinite local index theorem to compute the pairing with K-theory. This numerical pairing can be obtained by applying the trace to a KK-pairing with values in the K-theory of the fixed point algebra of the Tk action. As with graph algebras, the index pairing is an invariant for a finer structure than the isomorphism class of the algebra.


10.37236/160 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Daniel Král' ◽  
Douglas B. West

Let ${\cal G}$ be a class of graphs. A $d$-fold grid over ${\cal G}$ is a graph obtained from a $d$-dimensional rectangular grid of vertices by placing a graph from ${\cal G}$ on each of the lines parallel to one of the axes. Thus each vertex belongs to $d$ of these subgraphs. The class of $d$-fold grids over ${\cal G}$ is denoted by ${\cal G}^d$. Let $f({\cal G};d)=\max_{G\in{\cal G}^d}\chi(G)$. If each graph in ${\cal G}$ is $k$-colorable, then $f({\cal G};d)\le k^d$. We show that this bound is best possible by proving that $f({\cal G};d)=k^d$ when ${\cal G}$ is the class of all $k$-colorable graphs. We also show that $f({\cal G};d)\ge{\left\lfloor\sqrt{{d\over 6\log d}}\right\rfloor}$ when ${\cal G}$ is the class of graphs with at most one edge, and $f({\cal G};d)\ge {\left\lfloor{d\over 6\log d}\right\rfloor}$ when ${\cal G}$ is the class of graphs with maximum degree $1$.


10.37236/2535 ◽  
2013 ◽  
Vol 20 (3) ◽  
Author(s):  
K. Choudhary ◽  
S. Margulies ◽  
I. V. Hicks

A dominating set $D$ for a graph $G$ is a subset of $V(G)$ such that any vertex not in $D$ has at least one neighbor in $D$. The domination number $\gamma(G)$ is the size of a minimum dominating set in G. Vizing's conjecture from 1968 states that for the Cartesian product of graphs $G$ and $H$, $\gamma(G)\gamma(H) \leq \gamma(G \Box H)$, and Clark and Suen (2000) proved that $\gamma(G)\gamma(H) \leq 2 \gamma(G \Box H)$. In this paper, we modify the approach of Clark and Suen to prove a variety of similar bounds related to total and paired domination, and also extend these bounds to the $n$-Cartesian product of graphs $A^1$ through $A^n$.


Sign in / Sign up

Export Citation Format

Share Document